
Please visit

the Web sites

of our

advertising

partners

who make it

possible for us

to bring you this

Digital Edition

(PDF) of JDJ

ADVERTISER URL PH PG
ADVERTISER INDEX

Adrenaline www.adrenaline.com 877-890-9280 66
Aegis Consulting www.aegisconsulting.com 703-448-5420 22
BEA Systems developer.bea.com 408-570-8000 13
Cape Clear www.capeclear.com 866-219-5944 31
Cerebellum Software www.cerebellumsoft.com 888-862-9898 89
Cimmetry Systems www.cimmetry.com 800-361-1904 56
Compoze Software www.compoze.com 866-COMPOZE 37
Compuware www.compuware.com/numega 800-4-NUMEGA 25
Corda Technologies www.popchart.com 801-802-0800 43
Dice.com www.dice.com 515-280-114 4
Elixir Technology www.elixirtech.com/download 65 532-4300 69
Esmertec www.esmertec.com 877-751-3420 35
Fiorano www.fiorano.com 800-663-3621 71
Flashline.com, Inc. www.flashline.com 800-259-1961 55
Generic Logic www.genlogic.com 413-253-7491 34
Hit Software www.hitsw.com 408-345-4001 63
IAM Consulting www.iamx.com 212-580-2700 75
ICJD 2001 www.javacon2001.com 105
Inetsoft Technology Corp. www.inetsoftcorp.com 908-755-0200 59
Infragistics, Inc. www.infragistics.com 800-231-8588 3
Infragistics, Inc. www.infragistics.com 800-231-8588 81
Instantiations, Inc. www.instantiations.com 800-808-3737 47
INT www.int.com 713-975-7434 38
Internet World Spring 2001 www.internetworld.com 800-500-1959 85
Intuitive Systems, Inc. www.optimizeit.com 888-655-0055 57
Java Developer's Journal www.sys-con.com 201-802-3020 107
JDJ Store www.jdjstore.com 888-303-JAVA 112-113
JustComputerJobs www.justcomputerjobs.com 877-905-NERD 14, 82
Macromedia www.macromedia.com/ultradev 415-252-2000 15
Metrowerks www.metrowerks.com 800-377-5416 21
Netaphor http://cyberons.com 877 NETA4SW 56
NetDive www.netdive.com 415-981-4546 83
No Magic www.magicdraw.com 303-914-8074 7
Northwoods Software Corp. www.nwoods.com 800-226-4662 66
OOP.com www.oop.com 877-667-6070 53
Parasoft www.parasoft.com/jdj1 888-305-0041 33
Pramati www.pramati.com 408-965-5513 67
PreEmptive Solutions www.preemptive.com 800-996-4556 91
Programix www.jthreadkit.com 103
Programmer's Paradise programmersparadise.com 800-445-7899 17
Progress Software www.sonicmq.com/jdj 800-989-3773 2
Prosyst www.prosyst.com 678-366-4607 45
Quadbase www.quadbase.com 408-982-0835 93
QuickStream Software www.quickstream.com 888-769-9898 44
Rational Software www.rational.com/jdj2 800-728-1212 27
Recruitment Opportunities Section http://careers.sys-con.com 201-802-3028 114-118
SecureByDesign www.securebydesign.com 906-487-6520 49
Segue Software www.segue.com 800-287-1329 11
Sitraka Software www.sitraka.com/deploy 888-361-3264 19
Sitraka Software www.sitraka.com/components 888-361-3264 51
Sitraka Software www.sitraka.com/performance 888-361-3264 73
Sitraka Software www.sitraka.com 800-361-3264 124
Slangsoft www.slangsoft.com 972-2-648-2424 123
Softwired www.softwired-inc.com 41-14452370 77
Sybase www.sybase.com/partner/internetapplicationpartner4 800-8-SYBASE 23
SYS-CON Custom Media www.sys-con.com 925-244-9109 101
SYS-CON Media Career Center http://careers.sys-con.com 107
SYS-CON Media, Inc. www.sys-con.com 800-513-7111 109
Tidestone Technologies www.tidestone.com 800-884-8665 41
Togethersoft Corp. www.togethersoft.com 919-833-5550 6
Unify Corporation shop.unify.com 800-GO UNIFY 79
Verge www.ejip.net 87

Virtualscape www.virtualscape.com 877-VSCAPE4 39
Visualize Inc. www.visualizeinc.com/jdj 602-861-0999 103
Wall Street on Java Technology www.javaonwallstreet.com 212-286-0333 99
WebGain www.webgain.com 408-517-3815 29, 65
Wireless Business & Technology www.wireless-magazine.com 201-802-3020 95
XML DevCon Europe www.xmldevconeurope2001.com 121
Zero G www.ZeroG.com/updater 415-723-7244 61

EJB Home: How to Develop Message-Driven Beans: Jason Westra
These beans fill a void in the EJB architecture 16

Java Basics: Serving Web Pages Robert J. Brunner
Putting our Java database knowledge to work 24

Feature: A Model View Controller Scott Grant and
Framework for JavaServer Pages Joseph Campolongo
Leverage the flexibility of JSP 32

VAR: Consolidating Legacy Data Brady Flowers
Solving legacy data integration problems PART 1 46

Java & JBuilder: Mastering the JTable Bob Hendry
Have total control over your data PART 1 50

Feature: Agent-Based Computing in Java William Wright
Exploring the basics plus an open source Java toolkit 58

Feature: A Practical Solution for Alexis Grandemange
the Deployment of JavaServer Pages
Supporting Web applications without restrictions PART 1 78

CORBA Corner: Performance Khanh Chau
Management Starts with IDL Design
An early focus on IDL design is key in the CORBA environment 88

SYS-CON
MEDIA

Java COM

From the Editor
by Sean Rhody pg. 5

Guest Editorial
by Silvano Maffeis pg. 7

Letters to the Editor
pg. 40

Industry Watch
by Alan Williamson pg. 42

Java Servers
by Nitin Nanda pg. 68

Java Techniques
by John R. Hines &

Chris L. White pg. 74

Interview

Steve Rock
of Electronic Global

Broadcasting System pg. 96

Product Review
Rose JBuilder Link

by Ensemble Systems pg. 100

Java Jobs
by Bill Baloglu &

Billy Palmieri pg. 122

An Introduction to
Genetic Algorithms
in Java

An Introduction to
Genetic Algorithms
in Java

Harnessing the power of evolution’s optimization algorithmHarnessing the power of evolution’s optimization algorithm

January 2001 Volume:6 Issue:1

The World’s Leading Java Resource

TM

FORTE FOR JAVA COMMUNITY EDITION P. 101
SUN’S NEW INTEGRATED DEVELOPMENT ENVIRONMENT FOR JAVA TECHNOLOGY

New York City
Feb. 27 – Mar. 2, 2001

pg.105

Client Application

Client Proxy
Invoke
request

Prepare
data for use

Handle
exception

Use data

Throw exceptionOk?
N

Y

Stub

Translation
Layer

MQSeries Integrator
Synch Synch/

ASynch

FO
RT

E
F
O

R
JA

VA COMMUN
IT

Y
E
D
ITION

BONUSFREECOLLECTOR'SCD!

BONUSFREECOLLECTOR'SCD!

BONUSFREECOLLECTOR'SCD!

FRE
E

pg. 8pg. 8

FRE
E

FRE
E

SEAN RHODY, EDITOR-IN-CHIEF

sean@sys-con.com
AUTHOR BIO

Sean Rhody is editor-in-chief of Java Developer’s Journal. He is also a respected industry expert and
a consultant with a leading Internet service company.

Process Improvements

5JANUARY 2001

Java COM

E D I T O R I A L A D V I S O R Y B O A R D
TED COOMBS, BILL DUNLAP, DAVID GEE, MICHEL GERIN,

ARTHUR VAN HOFF, GEORGE PAOLINI, KIM POLESE,
SEAN RHODY, RICK ROSS, AJIT SAGAR, RICHARD SOLEY, ALAN WILLIAMSON

EDITOR-IN-CHIEF: SEAN RHODY
EXECUTIVE EDITOR: M’LOU PINKHAM

ART DIRECTOR: ALEX BOTERO
MANAGING EDITOR: CHERYL VAN SISE

EDITOR/COPY CHIEF: NANCY VALENTINE
ASSOCIATE EDITOR: BETTY LETIZIA
ASSOCIATE EDITOR: JAMIE MATUSOW
EDITORIAL INTERN: SUZANNE AUGELLO

EDITORIAL CONSULTANT: SCOTT DAVISON
TECHNICAL EDITOR: BAHADIR KARUV

PRODUCT REVIEW EDITOR: ED ZEBROWSKI
INDUSTRY NEWS EDITOR: ALAN WILLIAMSON

E-COMMERCE EDITOR: AJIT SAGAR

W R I T E R S I N T H I S I S S U E
ROBERT J. BRUNNER, JOSEPH CAMPOLONGO, KHANH CHAU,

BRADY FLOWERS, NEAL FORD, ALEXIS GRANDEMANGE,
SCOTT GRANT, BOB HENDRY, JOHN R. HINES, MICHAEL LACY,

SILVANO MAFFEIS, NITKIN NANDA, SEAN RHODY, JASON WESTRA,
CHRIS L. WHITE, ALAN WILLIAMSON, WILLIAM WRIGHT

S U B S C R I P T I O N S
FOR SUBSCRIPTIONS AND REQUESTS FOR BULK ORDERS,

PLEASE SEND YOUR LETTERS TO SUBSCRIPTION DEPARTMENT

SUBSCRIPTION HOTLINE: 800 513-7111
COVER PRICE: $4.99/ISSUE

DOMESTIC: $49/YR. (12 ISSUES) CANADA/MEXICO: $69/YR.
OVERSEAS: BASIC SUBSCRIPTION PRICE PLUS AIRMAIL POSTAGE

(U.S. BANKS OR MONEY ORDERS). BACK ISSUES: $12 EACH

PUBLISHER, PRESIDENT,AND CEO: FUAT A. KIRCAALI
VP, PRODUCTION: JIM MORGAN

SENIOR VP, SALES & MARKETING: CARMEN GONZALEZ
VP, SALES & MARKETING: MILES SILVERMAN
ASSISTANT CONTROLLER: JUDITH CALNAN
CREDIT & COLLECTIONS: CYNTHIA OBIDZINSKI

ACCOUNTS PAYABLE: JOAN LAROSE
ADVERTISING ACCOUNT MANAGERS: ROBYN FORMA

MEGAN RING
ASSOCIATE SALES MANAGERS: CARRIE GEBERT

CHRISTINE RUSSELL
SALES ASSISTANT: ALISA CATILANO

CIRCULATION MANAGER: CHERIE JOHNSON
ASSOCIATE ART DIRECTOR: DINA ROMANO

ASSISTANT ART DIRECTORS: CATHRYN BURAK
LOUIS F. CUFFARI

GRAPHIC DESIGNER: ABRAHAM ADDO
GRAPHIC DESIGN INTERN: AARATHI VENKATARAMAN

WEBMASTER: ROBERT DIAMOND
WEB DESIGNERS: GINA ALAYYAN

STEPHEN KILMURRAY
WEB DESIGNER INTERN: PURVA DAVE

SYS-CON EVENTS MANAGER: ANTHONY D. SPITZER

E D I T O R I A L O F F I C E S
SYS-CON MEDIA, INC., 135 CHESTNUT RIDGE RD., MONTVALE, NJ 07645

TELEPHONE: 201 802-3000 FAX: 201 782-9600
SUBSCRIBE@SYS-CON.COM

JAVA DEVELOPER’S JOURNAL (ISSN#1087-6944)
is published monthly (12 times a year) for $49.00 by

SYS-CON Publications, Inc., 135 Chestnut Ridge Road, Montvale, NJ 07645.
Periodicals Postage rates are paid at

Montvale, NJ 07645 and additional mailing offices.
POSTMASTER: Send address changes to:

JAVA DEVELOPER’S JOURNAL, SYS-CON Publications, Inc.,
135 Chestnut Ridge Road, Montvale, NJ 07645.

© C O P Y R I G H T
Copyright © 2001 by SYS-CON Publications, Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopy or any information storage and
retrieval system, without written permission. For promotional reprints, contact reprint
coordinator. SYS-CON Publications, Inc., reserves the right to revise, republish and

authorize its readers to use the articles submitted for publication.

W O R L D W I D E D I S T R I B U T I O N B Y
CURTIS CIRCULATION COMPANY

730 RIVER ROAD, NEW MILFORD NJ 07646-3048 PHONE: 201 634-7400

Java and Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc.,
in the United States and other countries. SYS-CON Publications, Inc., is independent of Sun
Microsystems, Inc. All brand and product names used on these pages are trade names,

service marks or trademarks of their respective companies.

SYS-CON
MEDIA

O
ne of the nice things about working for a large consulting company is that I have access
to our strategic services department. These are the people who help develop strategies for
our clients and research industry trends and conditions. I recently spoke with a few of our
folks who are concentrating on the business-to-business (B2B) market. This discussion

was part of what fueled this month’s column.
Last year’s hottest trend in B2B, the Net market, has cooled down considerably, for a cou-

ple of reasons. First is the general trend in the market for business plans with a concrete path
toward profitability. In addition, the experience of the past 18 months has shown that one of
the early principles for the development of these exchanges was fundamentally flawed.

Neutrality was seen as a prime consideration in the Net market, as it was felt that compa-
nies wouldn’t wish to put their inventory (and thus a great deal of business intelligence) in the
hands of a rival by running an exchange. But time has shown that the liquidity of the market
is more important to its success than the neutrality. Liquidity is a basic measure of the com-
munity that a Net market attracts to its site. While neutrality is useful, coalitions of large com-
panies are forming exchanges that become either the prime conduit for their business or one
of the leading channels. This in turn draws others in the industry to participate because of the
increased ability to do so. As my strategist friends like to say, “Liquidity trumps neutrality.” A
great example of such an exchange is Enron Online, which is generating incredible volume
and was one of the first B2B markets to cross over from its primary industry (energy) into
other types of business. These two factors have combined to reduce the number of Net mar-
kets and have led to a consolidation in this sector.

The market has also seen several large software providers go from a model in which they
sold products to an ASP model in which they supply services and host software. ePit is a good
example of such a plan. One effect these companies have had is to basically commoditize the
trading engine market, even to the point of entering the end business themselves.

All this is driving us toward the next step in the trend – business process engines. We already
have software that’s approaching this idea, things like EAI and middleware, designed to allow
loosely coupled systems to interact. But so far these systems have been largely about communi-
cation between applications. The next generation of systems will be about connecting business
processes and allowing companies to collaborate within their supply chain to model, adopt, and
change their overall processes without the need for intense IT redevelopment.

The vocabularies – languages needed to allow businesses to communicate at this level – are
already available or under development. RosettaNet is one; UDDI is another. Most are about
defining business processes in a specific context, so processes can be modeled and acted upon.

What’s not available but will be in the next stage in the evolution of the business world are
systems that will interpret these languages in a way that will allow companies to model their
processes in a powerful, easy-to-use fashion. Companies like BEA are working on products like
eCollaborate that are approaching this goal.

There’s still a rub here. Years ago I helped develop an optimization system for the paper
industry. Problem was it was extremeley complex. So is any business of appreciable size.

When you look at a business process, you can usually break it down into many smaller
derived processes. It’s one thing to define messaging that will allow applications to talk and
interact. No matter how you look at it, application-to-application integration still leaves the
development of business processes square in the hands of programmers – because they write
the applications. It’s quite another task to move the responsibility for that definition into the
hands of business owners. But that’s the ultimate value-add in this space – allowing a business
to define how it wants to go to market based on business conditions, not software APIs.

It’s still a ways away. The software has to be developed, and more importantly, the business
community will have to get used to it. Once that’s happened, though, we’ll be adding incredi-
ble value to the industry. Now that’s process improvement.

F R O M T H E E D I T O R

7JANUARY 2001

Java COM

G U E S T E D I T O R I A L

Wireless Info Services
Need Java Messaging

AUTHOR BIO
Dr. Silvano Maffeis is CTO at Softwired (www.JavaMessaging.com), a leading vendor of application-to-application messaging solutions. He is the
codeveloper of iBus, a JMS middleware for wireless and wireline systems.

silvano.maffeis@softwired-inc.com

WRITTEN BY SILVANO MAFFEIS

This year will be the genesis of mobile devices
and wireless applications. In fact, several Euro-
pean and American carriers have begun rolling out
high-speed, packet-oriented wireless networks
based on General Packet Radio Service (GPRS) as
well as other standards. I’ve also noticed interest-
ing Java devices based on the Symbian operating
system and the J2ME MIDP environment.

The combination of Java-enabled devices
and packet-oriented wireless bearers is a com-
pelling catalyst leading to the rapid adoption of
“collaborative” and highly interactive applica-
tions, delivering the right information (accord-
ing to our user profile) in real time.

What does this mean to us? Maybe a new
type of Internet, based on zillions of gadgets
exchanging information via wireless networks!

Such communicators and smart phones will
always be on and capable of receiving informa-
tion in real time. This means a new way of deliv-
ering information to the user. Browsing might not
be the right model in this mobile world, since
your wireless device is able to receive alerts and e-
mails at all times. As a user, I don’t want to chase
or browse for information. I want to receive an
alert when something interesting happens .

Reality check. Developing Java applications
that connect mobile devices to server applica-
tions in a scalable and reliable manner is a chal-
lenge. In the wireless world a mobile application
must be able to “speak” various protocols and
cope with varying bandwidth and loss of net-
work coverage (imagine issuing a stock purchase
transaction from your mobile device while dri-
ving through a tunnel). Wouldn’t it be nice if you
could build mobile Java applications on a plat-
form or middleware to take care of those issues?

Building a highly scalable platform to host
mobile Java applications isn’t easy either. I’ve
been involved in this type of development and
the biggest challenge was to devise a communi-
cations middleware that copes well with the spe-
cific aspects of wireless networks, namely, vary-
ing bandwidth, intermittent connectivity, and
packet loss. We opted to base our middleware on
the messaging paradigm and notably on the Java
Message Service (JMS) standard because (1) mes-
saging can deal with intermittent communica-

tion links using store-and-forward message
delivery, and (2) messaging can hide long com-
munication latencies by transmitting messages
in an asynchronous mode (this means the sender
of a message doesn’t have to wait until the mes-
sage has reached its destination). Also, messaging
middleware can be implemented in a lightweight
manner, meaning it can be deployed directly on a
mobile device. The wireless JMS is born!

What does this mean? By taking advantage of a
wireless-enabled JMS middleware, you can devel-
op mobile applications that deliver information
over various wireless bearers, in spite of sudden
changes in bandwidth or network coverage. For
application developers it truly offers a write-once-
go-anywhere possibility irrespective of the bearer.
The delivery of information is guaranteed by the
JMS store-and-forward message-queuing mecha-
nism, and its timely delivery to large groups of
receivers is made possible by the JMS publish-
and-subscribe model and by taking advantage of
the multicast capabilities of wireless bearers.

This type of JMS middleware acts as a highly
versatile bridge between server-side applications
running on a J2EE platform and J2ME applica-
tions running on a mobile device. If a server
application transmits information to a mobile
device that’s turned off, nothing is lost as the JMS
middleware will store and deliver the informa-
tion automatically and transparently. The same
occurs when the device transmits information to
a server. The information, which takes the form
of messages, is stored on the device and deliv-
ered to the server automatically as soon as a
wireless connection is physically possible.

What does this solve? The commonality
between mobile commerce platforms, wireless
financial data feeds, location services, instant
messengers, and multiuser games is that they all
embody a distributed systems architecture in
which various pieces of (Java) code need to com-
municate by wireless and wireline protocols. JMS
has proven viable when complex distributed sys-
tems need to be developed and deployed quickly.

As we witness innovative wireless services
and applications, a wireless messaging mid-
dleware could stand at the vanguard of this
revolution!

Java COM

8 JANUARY 2001

Starting about 3.5 billion years ago with bacteria, nature embarked on

the grandest of all algorithms: the evolution of highly complex and dynamic

machines capable of interacting with and adapting to their environments in

order to solve problems.We know these machines as plants and animals.

One look at the genetic code of even the simplest living organism
reveals a structure that’s enormously complex and efficiently tuned,
ensuring the survival of the organism in its environment. We might even
use the terms fault-tolerant, highly parallel, high performance, and ubiq-
uitous. Don’t forget that nature accomplished this extraordinary pro-
gramming feat without a single developer coding an exhaustive list of
if–then rules and switch statements to account for all possible scenarios.
It was simply based on a random set of interactions with the fittest organ-
isms surviving to replicate their genetic code into the next generation.

With the advent of the Internet over the past decade, an entirely dig-
ital world has arisen in which Web sites and applications are the organ-
isms fighting for survival in a highly complex, internetworked environ-
ment replete with computer viruses, server crashes, and the like – an
environment in which only the fittest will survive. As such, it’s my belief
that more sophisticated means of software development are needed to
build Web applications capable of interacting with and adapting to the
complexities of the new digital world thriving within our computers.

One simple, yet extremely powerful, technique that will likely play a role
in the evolution of the Internet (and the Web applications that live within
it) borrows several concepts from the biological world and transforms them
into bits and bytes with the goal of building adaptive software systems.

This article is the first of a two-part series that examines a technique
from the AI community called genetic algorithms, which borrows con-
cepts from biology to solve complex and often nonlinear problems
encountered in the world of computer science. This article will introduce
you to the concepts of genetic algorithms and discuss why Java is well
suited to their implementation. The next installment will investigate the
details of implementing these algorithms in Java. It’s my hope that after
reading these articles, you’ll think a little differently about software
development and its future. Genetic algorithms provide a problem-solv-
ing technique that’s too powerful to ignore.

Genetic Algorithms
First a little history. Genetic algorithms were born out of the idea of

evolutionary programming introduced by I. Rechenberg in the 1960s. John
Holland, a professor at the University of Michigan at the time, is credited
with the invention of genetic algorithms following the publication of his
1975 book Adaptation in Natural and Artificial Systems. In his book Hol-
land formulated the basics of genetic algorithms as models of machine
learning that derive their behavior from concepts of biology’s theory of
evolution. It was one of Holland’s students, David Goldberg, who popular-
ized the use of genetic algorithms when he was able to solve a difficult
problem involving gas-pipeline transmission for his dissertation in 1989.

That said, what exactly is a genetic algorithm? What are they used for?
What are the benefits over traditional programming techniques? How does
Java fit into this? I’ll attempt to answer these questions so you’ll have the
foundation needed to start implementing genetic algorithms (see Figure 1).

Darwin in Your Computer
A genetic algorithm can be thought of as a model for machine learn-

ing in which a population of randomly created individuals goes through
a simulated process of evolution – a digital survival of the fittest where

WRITTEN BY MICHAEL LACY

F E A T U R E

each individual represents a point in the problem’s solution search
space. Using correct terminology, an individual is represented by a
chromosome, which consists of several genes. Genes are essentially
the parameters of the problem to be solved. A collection of chromo-
somes is considered a population and is the fundamental unit on
which a genetic algorithm operates. Once the algorithm is set into
motion, individuals are selected from a population and combined in a
process called crossover to create a set of children. The children are ran-
domly mutated to create a new set of chromosomes to be reinserted
into the population. Once enough children chromosomes have been
created to replace a population, a generation is said to have passed.

With each generation, all the chromosomes are evaluated accord-
ing to some fitness criterion that’s a measure of the strength of the
chromosome compared to the rest of the population. Only the fittest
chromosomes survive into the next generation where the selection,
crossover, and mutate process begins anew. After a number of genera-
tions have elapsed, the best chromosome is selected from the popula-
tion and represents the optimal solution to the problem being solved.
Essentially what’s happening is that a random set of solutions to a prob-
lem within a given search space is created and evolved over an amount
of time to find an optimal solution. A concrete example will help clarify
the concepts described above.

The Traveling Salesman
The traveling salesman problem (TSP) is a classic computer science

problem in which a salesman must traverse a number of cities, visiting each
only once, while minimizing the distance traveled. For the case of 20 cities,
an exhaustive search method that examines all possible routes dictates a
search through over 2.4 billion billion (20!) permutations which, if evaluated
at a rate of 500 million per second, would take over 150 years to complete.

Employing a gen-
etic algorithm reduces the
amount of time to seconds
(or a fraction thereof, de-

pending on the com-
puting power avail-
able) and produces the
optimum solution in
some cases and a near
optimal solution in
most others. The rep-
resentation of this
problem in the genet-
ic algorithm domain
consists of cities with
their x and y coordi-
nates serving as indi-
vidual genes. A chro-

mosome is a list of
cities, in order, that repre-
sent one possible solution
to the traveling salesman
problem. The fitness of the
chromosome is then the
Cartesian distance between
the cities when traversed in
order, with the fittest chro-
mosomes being those with
the shortest overall dis-
tance (see Figure 2).

Typically, genetic algo-
rithms have been utilized in
solving complex optimiza-
tion problems when tradi-
tional programming tech-
niques (such as exhaus-

9JANUARY 2001

Java COM

Harnessing the

power of

evolution’s

optimization

algorithm

Harnessing the

power of

evolution’s

optimization

algorithm

Part 1Part 1 FIGURE 1 Flowchart for a genetic algorithm

Create
Random

Population

Parent
Chromosome

Selection

Crossover

Mutation

Insert Children
Chromosomes

Into Population

Stop:
Most Fit
Chromosome Is
Optimal Solution

Evaluate
Fitness of

Individuals

Convergence?

Problem Definition:
Select Parameters
Define Gene
Define Chromosome
Define Fitness Function

Java COM

10 JANUARY 2001

tive search, analytic optimization, and line minimization) fail to arrive at a
solution in a reasonable amount of time. Genetic algorithms confer the fol-
lowing advantages:

• They evaluate several solutions simultaneously, covering a large
search space.

• They work well in parallel implementation.
• They optimize parameters with very complex cost functions.
• They create a list of optimal solutions, not just a single solution.
• They work with various data types.

This leads to the next question: Why use Java?

Why Java?
As you can see, genetic algorithms can become computationally

expensive depending on a number of parameters (including the size of the
population, the complexity of the fitness function, the size of the chromo-
some, and the time to converge on an optimal solution. Thus, in choosing
a language for implementation, weighing the benefits of using Java versus
using a compiled language such as C or C++ is essential. For Java to be a
viable language for genetic algorithm implementation, it must present sig-
nificant advantages to make up for its degraded performance as com-
pared to other compiled languages. And it does! The advantages of Java are
particularly evident in the area of distributed computing.

Simple and Object-Oriented
Given the dynamic memory requirements for a genetic algorithm,

Java’s garbage collector relieves us from having to allocate and deallocate
memory for chromosomes in each generation. This allows us to focus
specifically on coding the problem at hand and not worrying about
memory management details. Also, the use of objects allows us to create
an endless number of problem encodings and still use the genetic algo-
rithm framework. This means that once the basic algorithm structure is
developed, implementing a genetic algorithm to solve new problems
becomes a matter of defining the problem and its encoding. Next month
we’ll take an in-depth look at what this means during implementation .

Robust and Secure
Java was designed for creating software that’s highly reliable and

capable of operating in distributed environments. As developers start to
move genetic algorithms from a single CPU to a network of parallel and
distributed CPUs, robustness and security are essential. Think of parti-
tioning a genetic algorithm into a number of populations and letting
them evolve separately in parallel, frequently distributing the most fit

from each population into all the populations. JavaSpaces presents itself
as an excellent candidate for moving genetic algorithms into a distrib-
uted environment.

Architecture-Neutral and Portable
As referenced above, the real power of genetic algorithms can be

obtained in parallel and distributed environments. With Java’s platform-
neutrality, populations and the algorithm to evolve them can be distrib-
uted among a network of computers for processing, provided that a JVM
is available. Don’t worry about the implementations for different operat-
ing systems and CPUs. Think of the SETI@home project that utilized over
two million PCs connected to the Internet to churn through radar data in
the search for extraterrestrial intelligence. Genetic algorithms are ideal
candidates for use in such a distributed environment, with Java being the
obvious language of choice given its portability. Computing power is no
longer an issue; there will be more than enough to go around.

Building Blocks
Now that we’ve briefly examined the nature of genetic algorithms and

why Java makes sense as the development language of choice, let’s take a
more detailed look at the fundamental components that make up a genetic
algorithm. For the sake of simplicity, we’ll cover the most basic implementa-
tions of genetic algorithms and introduce the essential core concepts. I high-
ly recommend further research and study if genetic algorithms spark a deep-
er curiosity. A number of resources are available on the Web for such study.

Genes
A gene can be defined as the encoding of a single parameter in a

genetic algorithm. A gene can take many forms depending on the prob-
lem definition. For the traveling salesman problem, a gene represents a
city and its longitude and latitude coordinates. However, when solving a
high-order, nonlinear, partial differential equation, a gene can represent
one of the variables to solve for and its range of acceptable values.

This highlights the two main flavors of genetic algorithms: permutation-
encoded versus real-parameter. In the former version, the goal is to find the
optimal ordering of a set of genes such as in the TSP. As for the latter, an
example of a real-parameter genetic algorithm is finding x and y such that
the following function is minimized: f(x, y) = 2x * sin(3 * y) + 4y * cos (5 * x).

Historically, genes were represented as sequences of 1’s and 0’s.
However, this approach has not been shown to yield better perfor-
mance and introduces a layer of complexity as a translation is needed
between the actual values of parameters and their binary representa-
tion. In addition, handling genes as objects in Java makes the imple-
mentation more intuitive and can be extended to make them reusable
across different genetic algorithm implementations. (More on this in
next month’s article.)

Gene Pool
Much like its biological equivalent, the gene pool for a genetic algo-

rithm is a collection of all the available genes. From the gene pool, chro-
mosomes are created at the beginning of a genetic algorithm by ran-
domly drawing genes from the gene pool and assembling them to build
a chromosome that represents one solution for the search space defined
for the genetic algorithm.

Returning to the examples mentioned above, the gene pool for solving the
traveling salesman problem consists of one gene per city to be traversed. For
the case of 20 cities, there will be 20 genes in the gene pool from which ran-
dom chromosomes will be created. For real parameter genetic algorithms,
such as minimizing the function f(x, y), the gene pool will consist of two genes,
one representing the variable x and the other representing the variable y.

Chromosomes
Continuing with definitions, a chromosome is a collection of genes

representing a single point in the solution search space. The fitness of a
chromosome is determined by a cost function determined prior to the

FIGURE 2 Graphical representation of the traveling salesman problem

GENE 1
Description:
New York City
X Coordinate:
73.94
Y Coordinate:
40.67

GENE n
Description:
San Francisco
X Coordinate:
122.56
Y Coordinate:
37.79

Gene

Chromosome

Population

Java COM

12 JANUARY 2001

execution of the genetic algorithm. Again, returning to the traveling
salesman problem, the fitness of a given chromosome is the sum of the
distances between the cities when traversed in the order specified by the
chromosome. For the real parameter chromosome (f(x, y)), the fitness is
the result of substituting the x and y values back into the original func-
tion and performing the calculation. Note that the fitness of a chromo-
some tells you nothing about its strength relative to other chromosomes;
rather, it’s a raw evaluation of the chromosome’s fitness. It’s at a higher
level that fitnesses are compared and selection proceeds according to
the rules of a genetic algorithm. This higher level is the population.

Population
A population is a collection of all the chromosomes being evolved in

a genetic algorithm. As new chromosomes are created and reinserted
into the population, less fit chromosomes are replaced and only the
most fit survive into the next generation. As mentioned previously, it’s
here that the process of digital evolution occurs, as the fitness of the
competing chromosomes is compared in order to select parent chro-
mosomes to reproduce.

Depending on the search space for a given problem, population size
can range from a few dozen chromosomes to several hundred, several
thousand, or more. Given the fact that a chromosome represents a sin-
gle point in the solution search space, for problems with extremely large
search spaces (such as the 20-city TSP), it makes sense that a large pop-
ulation size is needed to cover as much of the space as possible. Other-
wise, the genetic algorithm may approach a local minimum and con-
verge toward it, rather than the global minimum. Convergence is a core
issue in genetic algorithm implementation, and I highly recommend
further examination outside of this article to gain additional insight.

Genetic Algorithm Operations
Now that we’ve discussed the requisite components of a genetic algo-

rithm, it’s essential to understand how a genetic algorithm operates on
each of the components to create a simulated evolutionary environment
that combs a search space for an optimal solution. There are five ele-
mentary genetic algorithm operations:
• Fitness evaluation: With the examination of a chromosome and its

role within a population, we talked briefly about fitness evaluation
and its importance. The proper definition and evaluation of a fitness
function is critical to the success of the genetic algorithm. It’s the
means by which chromosomes are compared to one another to deter-
mine the most fit individuals. The primary goal here is differentiation
between the more fit chromosomes and the less fit chromosomes.
Remember, it’s survival of the fittest.

• Selection: This is the method by which chromosomes are chosen to
reproduce in order to create children for the next generation. The goal
of selection is to choose individuals that, on average, are more fit than
others to pass on their genes to the next generation while, at the same
time, maintaining genetic diversity. If a population consists of identi-
cal individuals, genetic diversity is lost and it’s difficult for the genetic
algorithm to explore different regions of a search space.
Several different methods are available for genetic algorithm selec-

tion, but for the sake of simplicity and brevity I’ll focus on a technique
labeled tournament selection. With this technique, a group of individuals
is selected at random and the two most fit are selected for reproduction
(i.e., they win the tournament). Keeping the tournament size small (4–8
chromosomes) ensures genetic diversity as the group is small, and what
appears to be the most fit within the group may actually be a weak chro-
mosome when compared with the entire population.

• Crossover: Once two parent chromosomes are selected, they repro-
duce two child chromosomes via the crossover operation. One of the
parameters of a genetic algorithm is the crossover probability (typi-
cally 75–90%) that represents the statistical chance that two given
chromosomes will cross over. For each potential crossover, a random

number between 0.0 and 1.0 is generated. If the number is greater
than the crossover rate, then crossover doesn’t occur and the children
chromosomes are exact replicas of their parents. If crossover does
occur, then the parents randomly exchange genes to create new chro-
mosomes.

There are three types of crossover covering a wide range of problem
encodings:
– Permutation encoding with unique genes: In this case, a gene can

appear only once within a chromosome. One example is the TSP.
Each city may appear only a single time within the chromosome.

– Crossover operating on the permutation encoding, with the excep-
tion that genes don’t have to be unique: Let’s imagine that we have
a genetic algorithm that’s evolving a musical piece within the key of
C. All the notes in the key of C are viable and can be repeated indef-
initely up to the size of the chromosome.

– Real parameter chromosome crossover: In a real parameter chro-
mosome, each gene will represent a parameter to be applied to a
given cost function. Building on the function, f(x, y) described ear-
lier, two parent chromosomes will have genes for the x variable,
both representing different values. A method for crossing over the
two genes might involve creating a new gene for the x variable with
the value being the average of the two parent genes.

Crossover is another essential genetic algorithm operator that ensures
genetic diversity within a population. The conceptual goal of
crossover is, over time, to combine the good portions of chromosomes
into newer and better chromosomes. For a better understanding, see
Figure 3. I highly recommend further exploration of the crossover
operator before attempting to implement your own genetic algorithm.

• Mutation: Similar to crossover in that it randomly modifies chromo-
somes, it operates on only a single chromosome at a time (see Figure
4). As with crossover, there’s a probability associated with the occur-
rence of mutations, albeit a small one (typically 5–25%). Yet again,
returning to the TSP, a typical mutation can include randomly select-
ing two endpoints within a chromosome and reversing the order of
the genes. Several mutation techniques that can be utilized depending
on the problem encoding won’t be discussed here. It’s important to
remember that mutation is a fundamental operator for ensuring
genetic diversity within a population, which translates into a better
coverage of the search space.

• Insertion: This is the final algorithmic step to conclude a generation in
a genetic algorithm. Insertion is the process of introducing children
chromosomes into a population and removing the less fit chromo-
somes. One common technique for insertion utilizes a technique
called elitism in which the n best chromosomes of a population are
kept for the next generation and the rest are replaced with new chil-
dren. This ensures that the most fit chromosomes survive into the fol-
lowing generation and have the opportunity to reproduce again.

Genetic Algorithm Considerations
By now you should have a basic understanding of what a genetic

algorithm is and how it works. Let’s now quickly look at some consider-
ations when implementing a genetic algorithm.

FIGURE 3 Graphical representation of the crossover operator

7 96 71 2 3 8 8 91 3 5

81 3 42 95 6 7

Parent 1

Child 1 Child 2

Parent 2

7 92 6 8 93 51

6 4 542

4

Java COM

14 JANUARY 2001

Convergence
The goal of implementing any genetic algorithm is convergence on

an optimal solution for a given search space. Convergence will be affect-
ed by numerous factors associated with the implementation of the
genetic algorithm, such as parameter encoding, population size,

crossover and mutation rates, and selection technique. Depending on
the problem being solved, these factors are usually determined only by
experience working with genetic algorithms of all flavors. My recom-
mendation is to start coding!

Performance
Performance is an issue that has constantly plagued genetic algo-

rithms due to their heavy-duty processing power requirements. With the
combination of Moore’s Law and the increased availability of highly par-
allel, distributed computing power, I don’t think performance will be an
issue in the near future.

Real-World Applications
Here’s the number one barrier to acceptance of genetic algorithms as

a practical programming technique: real-world applications. Genetic
algorithms have resided primarily in academia solving
classic computer science problems. Their use in business
and commercial environments is highly unproven. As
computing power becomes more readily available, I
think we’ll see an increase in adaptive software systems
with genetic algorithms at their core.

One particular area of work that may break down the
wall is security. Researchers have begun to develop oper-
ating systems modeled after the immune system of ani-
mals. As new viruses invade the system, strategies are
evolved to combat the virus, remove it from the operat-
ing system, and identify similar attacks in the future. And
with the proliferation of highly sophisticated attacks on
Internet sites, such an “immune” system offers a much
better (and quicker) response than waiting for a human
to recognize the attack and code a patch to fix it or close
ports on a firewall to deny it.

Another interesting outbranching of genetic algo-
rithms is the field of genetic programming pioneered by
John Koza. Without getting into the details, genetic pro-
gramming is essentially using genetic algorithms with
the genes representing programmatic constructs (e.g.,
AND, OR, IF, THEN, +, and -). What’s evolved are chro-
mosomes representing computer programs. It’s an excit-
ing field that’s worth a deeper look.

Conclusions
The goal of this article wasn’t to encourage you to

implement genetic algorithms in your code tomorrow,
but rather to inform and educate you about one tech-
nique for building software capable of adaptation. As
the Internet continues to grow at a furious pace, a new
digital world is being created that operates in the lan-
guage of 0’s and 1’s. The organisms fighting for survival
are the Web sites that you and I create on a daily basis.
Whether fighting for survival in the sense of attracting
new customers or warding off the latest computer hack-
er, adaptability will be crucial to survival in the complex
digital world. Hopefully this article has sparked a new-
found interest in software development and its future. If
so, stay tuned for the next issue of JDJ, in which I’ll
demonstrate a simple implementation of a genetic
algorithm.

AUTHOR BIO
Michael Lacy is an engineer for the platform development group at Shutterfly, an
online photo service, where he develops Web-based solutions for digital image print-
ing, enhancing, and sharing. He’s also a certified Java programmer and developer.

FIGURE 4 Graphical representation of the mutation operator

1 2 3 7 8 96 5 4

81 3 42 95 6 7Original Chromosome

Mutated Chromosome

mlacy@shutterfly.com

Java COM

16 JANUARY 2001

alexr@fiorano.com

The Enterprise JavaBeans specifica-
tion 2.0 introduced another bean into the
mix. One of the primary goals for the EJB
2.0 release was to define how EJB inter-
acts with the Java Message Service (JMS),
thereby defining how these Enterprise
Java APIs interact within the Java 2 Enter-
prise Edition (J2EE) platform. Until ver-
sion 2.0 of the specification was released,
the defined enterprise beans, entity and
session, supported only synchronous
operations. However, the need to per-
form asynchronous processing is critical
in many high-volume applications.

Years ago, for example, I worked on
a messaging system for NORAD at
Cheyenne Mountain in Colorado. The
system needed to process thousands of
messages a second to multiple sub-
scribers. The messages needed to be in
the correct order, and not a single mes-
sage could be lost – not a single one! This
is an example of a mission-critical mes-
saging application.

While messaging systems are crucial
to mission-critical applications, often
there’s less critical yet useful functional-
ity that can be off-loaded to an asyn-
chronous process. For instance, JMS is a
practical solution for sending e-mails
and logging events. Using a messaging
service to perform the processing allows
for quicker response time to an end user,
as he or she isn’t held up while the sys-
tem sends the e-mail.

JMS in a Small Nutshell
Before building a message-driven

bean, I’ll cover some basics of the Java

Message Service. JMS is an API for mes-
sage-based systems. It’s generic enough
to allow existing messaging products like
IBM’s MQSeries to incorporate it into
their offering, yet powerful and flexible
enough to provide a rich feature set for
enterprise-level messaging. JMS pro-
vides publish-and-subscribe through
the “topics” and point-to-point messag-
ing through “queues.” It also provides the
ability to acknowledge that a message
was received and is being processed as
well as guarantee message delivery even
when the receiver (e.g., durable sub-
scriber) isn’t available. Last, JMS mes-
sages can be transactional to provide
reliable delivery and handling of mis-
sion-critical messages such as those in a
military command-and-control system.

With that quick overview, let’s dig
into building our message-driven bean
to see how JMS and EJB fit together.

Overview of Message-Driven Beans
A message-driven bean is a JMS

MessageListener that indirectly con-
sumes messages from its container. The
container delegates a received message
either to an existing method-ready
instance or to a new instance allocated
to handle the message. Message-driven
beans are stateless; therefore, any
instance may service a message equally.
Likewise, similar to stateless session
beans, message-driven beans are anony-
mous, having no identity to a client.

Why are message-driven beans so
cool? Why not just use straight JMS in
your EJB application? Why are message-

driven beans an exceptional addition to
the EJB specification? The reasons are
numerous.

First, message-driven beans provide
a component model around JMS mes-
saging. They support both topics and
queues, allowing publish-and-subscribe
and point-to-point messaging in a com-
ponent execution environment, which
is particularly important for scalability
and portability.

This environment promotes scalabil-
ity through its efficient resource man-
agement while processing messages.
When developing with message-driven
beans, you take advantage of the con-
tainer’s ability to pool bean instances
and resources such as JDBC connec-
tions. You no longer have to code your
own queue and topic pooling classes.

Concerning portability, the compo-
nent execution environment (e.g., con-
tainer) for message-driven beans offers
portable access to resource factories
and resource environment entries. The
container uses structural information
from the bean’s deployment descriptor
to link references to existing resources in
the environment in a portable manner.
Also, with message-driven beans you
don’t have to develop special “start-up”
classes that initialize JMS Destinations
at application server start-up.

Second, message-driven beans ease
the development of asynchronous sys-
tems for both clients and Bean
Providers. Message-driven beans are a
snap to use from clients. The client
looks up the JMS Destination by using
JNDI and sends the message. Since

E J B H O M E

How to Develop Message-Driven Beans

WRITTEN BY
JASON WESTRA

These beans fill a void in the EJB architecture

T
his month in EJB Home I’ll show you how to build a mes-
sage-driven bean. Knowledge of this EJB will enhance your
toolkit for developing asynchronous Enterprise Java appli-
cations – whether they’re mission-critical or not.

Java COM

18 JANUARY 2001

message-driven beans have no home or
remote interface, they’re simply repre-
sented by a topic or queue JMS Destina-
tion (see Figure 1).

Message-driven beans live by the
threading restrictions imposed on all
EJBs; namely, you may not start your
own threads in the bean (see EJB speci-
fication 2.0 for details beyond this arti-
cle). This restriction eases development
of message-driven beans because the
container performs concurrency control
for you. You don’t have to worry about
developing thread-safe business logic.

“How-to” Guide
Let’s roll our sleeves up and build a

message-driven bean. In general, devel-
oping a message-driven bean entails
two steps: code the bean class and cre-
ate the bean’s deployment descriptor.
I’ve chosen to use the WebLogic Server
6.0 beta (the only product offering mes-
sage-driven beans at the time of this
writing) to create my message-driven
bean, but the component should be
deployable to other EJB 2.0–compliant
servers. Listing 1 contains the code of an
example bean that performs remote log-
ging. Use it as a guide as I cover the
basics of coding your first bean.

Coding a Message-Driven Bean
Realizing that a message-driven bean

is a JMS MessageListener, your first step
should be to create a Java class that
implements the javax.jms.MessageLis-
tener interface. Your bean class must be
declared public and must not be final or
abstract. It may implement the Mes-
sageListener interface directly or inherit
from another class that implements the
interface, thereby implementing it indi-
rectly. When you implement the Mes-
sageListener interface you must code an

onMessage method, which performs the
business logic required to process the
message. The onMessage method
shouldn’t throw exceptions, as they won’t
be handled by the client application and
may cause the container to choke on ejb-
Remove (see below). The code in my
message-driven bean example (Listing
1) is as simple as it gets. It logs to system
out, which is presumably redirected to a
log file of interest. Notice how onMes-
sage has a try block that contains all code
and catches java.lang.Exception to make
sure nothing is thrown from the method.

Your message-driven bean must
have an empty constructor, which is
called from the container when it cre-
ates a new instance of the bean. Like-
wise, you must code an ejbCreate
method that also takes no arguments.
The ejbCreate method should be public
and must not be static or final. These
rules allow the container provider to
extend your bean class, if that’s how it
implements its container, and allow the
container to call the ejbCreate method
when it creates a new instance of the
bean. Finally, the ejbCreate method
must declare no application exceptions
in its throws clause. Clients cannot catch
exceptions thrown by message-driven
beans.

Last, your message-driven bean
must define an ejbRemove method. The
ejbRemove method follows the same
rules as ejbCreate as far as the signature.
If your message-driven bean has opened
a resource in its ejbCreate or onMessage
method, you must release the
resource(s) in your bean’s ejbRemove
method. It’s important to note that exe-
cution of ejbRemove by the container
isn’t guaranteed. The ejbRemove
method may not be called in cases
where there’s an EJB server crash or a
system exception is thrown back to the

container. It’s the responsibility of the
application utilizing message-driven
beans to provide a way to regain
resources when necessary. It’s not the
responsibility of the Bean Provider to do
code recovery logic. The complexity of
managing a resource recovery process
beckons the Bean Provider to open and
close resources in onMessage rather
than waiting for ejbRemove to be called.
A try block with a finally clause in
onMessage can ensure that the
resources are closed when it finishes, no
matter if an exception occurs or not.
However, there’s a performance penalty
incurred with this approach. Pick your
poison.

Creating the Deployment Descriptor
As with any EJB, you must create a

deployment descriptor, which defines
the structural and application assembly
information of your component. This
information assists the container in
managing your component. Three
important steps define your message-
driven bean’s deployment descriptor.
Note: Listing 2 is an excerpt from my
ejb-jar.xml deployment descriptor. Use
it as a guide for creating your bean’s
descriptor.

First, associate your message-dri-
ven bean to a JMS Destination. To send
messages to the bean, a client uses this
destination rather than a home and
remote interface, which don’t exist in
the message-driven bean’s component
model. When associating your bean
with a queue destination, don’t associ-
ate multiple message-driven beans
with the same queue. JMS doesn’t
define how multiple message con-
sumers will handle messages, and your
application will behave strangely to say
the least.

I’ve chosen to map my example,
MessageLogBean, to a Topic. This allows
multiple message-driven beans to sub-
scribe to the topic and log to various
sources, send e-mail alerts on critical
messages, and so on. Topics allow for
easy third-party integration. If you’re
interested in hearing about what’s being
logged as well, simply create a message-
driven bean that subscribes to the same
topic!

Second, map resources are needed in
the message-driven bean’s environment
to perform its business logic (remember,
resources and resource factories allow
your bean code to be portable across
servers). My bean has no need for
resources, but if I logged to a URL
instead of sysout, I’d probably map to a
URLConnection factory defined in the
server’s available resources.

E J B H O M E

FIGURE 1 Client contract for message-driven bean lookup

client JMS Destination

Container

Message-driven bean
instances

Message-driven bean
instances

Java COM

20 JANUARY 2001

E J B H O M E
Since I used WebLogic Server, I

defined a JMS Server and the Topic for
my message-driven bean’s destination
in the server’s config.xml file (see Listing
3). WebLogic Server maps the Topic to
the bean in its proprietary deployment
descriptor, but since this association is
declarative, you may map it as you see fit
for your own server.

Last, set your message-driven bean’s
transactional properties. While entity
beans can only be container managed,
message-driven beans, like session
beans, may manage their own transac-
tions. Whether your bean is container
managed or bean managed has an
impact on the transactional attribute for
your onMessage method as well as the
guaranteed delivery of your message
handling.

If your bean is bean managed,
remember that only the onMessage
method should define transaction
boundaries. It must commit or roll back
the transaction before it returns. With
bean-managed, message-driven beans,
the act of dequeueing the message is not
within transactional boundaries (EJB 2.0
specification, section 16.2.6). Therefore,
message delivery isn’t guaranteed with
bean-managed transactions.

It’s advised to use container-man-
aged transactions instead. This lets the
container assume responsibility for the
transactional scope. It will manage the
transaction and guaranteed message
delivery for you. The act of dequeue-
ing, calling other EJBs, and database
interactions are executed within the
transaction.

A message-driven bean that has a
transaction type of container-man-
aged can declare only a transaction
attribute of NotSupported or Required.
Distributed transaction contexts don’t
propagate to message-driven beans, so
there’s never a transaction context
associated at the time of message
arrival. Thus a bean either processes its
message with no transaction (NotSup-
ported) or the container creates a new

transaction for the bean to process
within (Required).

Wow! You’re done developing your
message-driven bean. That’s right,
there’s no need to develop a remote
interface or a home interface for mes-
sage-driven beans.

Restrictions on
Message-Driven Beans

To apply the EJB component model
to JMS, certain restrictions evolved
that you must be aware of. Among
these restrictions is the inability to
order messages. The multithreaded
container model may process mes-
sages in any order, so your message-
driven beans must be prepared to
process messages out of order. The
inability to automatically order mes-
sages is a liability for mission-critical
applications such as the command-
and-control system for NORAD. I see
message ordering as an opening for
J2EE server vendors to provide a value-
added feature that distinguishes their
message-driven bean implementation
from others.

You shouldn’t use the JMS acknowl-
edgment API to acknowledge a mes-
sage that was successfully processed.
Acknowledgment is the container’s
responsibility. If the bean uses bean-
managed transaction demarcations,
the acknowledgment can’t be part of
the transaction.

Last, there are several restrictions on
a message-driven bean’s context. The
container sets a MessageDrivenContext
into a message-driven bean to provide
the bean access to its contextual infor-
mation. MessageDrivenContext is
derived from EJBContext, yet many of its
methods are not accessible to you
because they don’t make sense in the
context of an asynchronous process.
The container will throw an IllegalState-
Exception if you try to call these meth-
ods, and they’re deemed inaccessible by
the EJB 2.0 specification.

While the API is present, you can
never call getCallerPrincipal and isCal-
lerInRole because the client security
context isn’t passed along with the call
to the JMS Destination represented by
the message-driven bean.

Similar to entity and session
beans, a context’s getRollbackOnly
and setRollbackOnly are methods
accessible only in container-managed,
message-driven beans and only within
onMessage. Other methods in the
bean have no transaction context and
will result in a thrown exception. On
the other hand, the method getUser-
Transaction can be called only from
within a bean-managed bean, a
restriction also imposed on session
and entity beans.

Finally, you may not call getEJB-
Home on the MessageDrivenContext
object. Message-driven beans have no
EJBHome objects, thus this method has
no meaning.

Conclusion
Message-driven beans fill a void in

the EJB architecture, which previously
defined a model only for synchronous
processing. This new bean provides a
component wrapper around JMS’s
asynchronous messaging. The com-
ponent model provides ease of devel-
opment, ease of deployment, and the
scalability and portability you’ve
come to expect from the EJB architec-
ture. I foresee many useful applica-
tions of the message-driven beans in
the future. They’ll be used to off-load
simple functionality to separate
processes and enable the develop-
ment of asynchronous, mission-criti-
cal applications. In this article you
saw how easy message-driven beans
are to develop. I recommend you take
advantage of them when developing
asynchronous processing within your
EJB application.

jwestra@vergecorp.com

AUTHOR BIO
Jason Westra is CTO at

Verge Technologies Group,
Inc., a Java consulting firm
specializing in e-business

solutions with
Enterprise JavaBeans.

package jdj.january;

import javax.ejb.CreateException;
import javax.ejb.MessageDrivenBean;
import javax.ejb.MessageDrivenContext;

import javax.jms.Message;
import javax.jms.MessageListener;
import javax.jms.TextMessage;

/**
* @author jwestra Verge Technologies Group, Inc. 2000
*/

public class MessageLogBean implements MessageDrivenBean, Mes-
sageListener {

private MessageDrivenContext m_context;

/**
* Public, no argument constructor
*/
public MessageLogBean() {}

/**
* ejbActivate is required by the EJB Specification
*/

public void ejbActivate() { }

/**
* ejbRemove is required by the EJB Specification
*/

public void ejbRemove() {
m_context = null;

Listing 1: MessageLogBean.java source

Java COM

22 JANUARY 2001

E J B H O M E

}

/**
* ejbPassivate is required by the EJB Specification
*/

public void ejbPassivate() { }

/**
* Sets the MessageDrivenContext.
*
* @param ctx MessageDrivenContext Context

for session
*/

public void setMessageDrivenContext(MessageDrivenContext
ctx) {

m_context = ctx;
}

/**
* ejbCreate() with no arguments is required by the EJB 2.0

specification
*/

public void ejbCreate () throws CreateException {}

/**
* Implementation of MessageListener.
*
* onMessage logs to sysout. Using an asynchronous, mes-

sage-driven bean
* to log eliminates the bottleneck of a synchronized log

manager in
* your application and enables distributed logging from

remote clients.
*/

public void onMessage(Message msg) {
// everything is within a try block to ensure no excep-

tions are thrown
// from within this method
try {

TextMessage tm = (TextMessage) msg;

String text = tm.getText();
System.out.println("MessageLogBean : " + text);

}
catch(Exception ex) {

// catch all exceptions
ex.printStackTrace();

}
}

}

<message-driven>
<ejb-name>MessageLogBean</ejb-name>
<ejb-class>jdj.january.MessageLogBean</ejb-class>
<transaction-type>Container</transaction-type>

<message-driven-destination>
<jms-destination-type>javax.jms.Topic</jms-destina-

tion-type>
</message-driven-destination>

</message-driven>

<JMSServer Name="myJMSServer" Targets="myServer">
<JMSTopic JNDIName="LogMgrTopic" Name="LogMgrTopic"/>

</JMSServer>

Listing 3: WebLogic Server config.xml entries

Listing 2: Excerpt from ejb-jar.xml deployment descriptor

Java COM

24 JANUARY 2001

J A V A B A S I C S

WRITTEN BY
ROBERT J. BRUNNER A

fter reading the previous articles in this series, we’re now
ready to apply our Java database knowledge to real-world
applications. Perhaps the simplest example is utilizing JSP to
dynamically present data stored in our database over the
Internet.

Putting our Java database knowledge to work

While many commercial systems
exist that can facilitate the entire devel-
opment and deployment process (e.g.,
JDeveloper and Oracle 8i), I’ll focus
instead on one of the products from the
Apache Software Foundation (ASF). The
Tomcat server provides the reference
implementation for both JSPs and
Servlets. Because it’s an Open-Source
organization, all Apache products are
free and include all source code, so you
can look under the hood.

In this article, we’ll first go over the
basics of JSP, including the overall archi-
tecture and most commonly used JSP
tags. Then we’ll look at how to connect
JSPs and databases to provide dynamic
data presentation.

Just the Facts
Before we proceed any further, it’s

always a good idea to clarify the funda-
mentals or, in this case, outline the
basics of the JSP, including what it is and
how it works. As part of the Enterprise
edition of the Java language, JSP is not
included with the Standard edition of
the Java language (J2SE). As a result, it’s
in a standard extension package (i.e., its
root package is javax, not java), and due
to the manner in which it works, it’s
actually a subpackage of the servlet
standard extension package (javax.
servlet). Unlike Servlets, which are 100%
Java, JSP pages combine HTML and Java
(or other languages that conform to the
JSP model) into a single server
processed file. The Java code is distin-
guished by being enclosed in specific
JSP tags, which look similar to HTML,
and can be easily generated by an IDE.
As a result, JSP is extremely easy to use
and provides a rapid design, develop-
ment, and deployment cycle.

In fact the JSP file is effectively
processed in two stages. When the JSP
file is first loaded by the JSP engine, the
file is initially processed and the Java
source code is compiled into a Java class
file, which is generally a Servlet class.
This step, formally known as the HTTP
translation stage, is where all HTML tags
and some of the simpler JSP tags are
processed.

The second stage occurs when a user
actually makes a request from the JSP
page (e.g., a Web browser requests the
JSP file), and the JSP engine processes
the request by executing the compiled
JSP file. This step is formally known as
the request processing stage and allows
the user to send specific data to the JSP
file. The Java code that’s executed is
known as a scriptlet and is dynamically
executed with each user request, allow-
ing the content to be different depend-
ing on each specific request. This ability
can be used to build dynamic Web sites,
such as e-commerce, by generating the
results of a request from a database.

In the interests of brevity and not
insulting your intelligence, I won’t cover
the HTML aspects of a JSP file, in other
words, HTML tags like <HTML> or
<H2>. If you want more information
about HTML, visit the home page of the
World Wide Web, www.w3c.org, where
you can find information on all sorts of
things related to the Web. I’ll go over
some of the basics of the JSP tags, which,
unlike the HTML tags, are case sensitive.

Since a JSP file has HTML and Java
code intermixed, it’s important to know
how to quickly identify the JSP tags. This
is actually straightforward, since JSP
tags start with only two different charac-
ter sequences, either <% or <jsp. In addi-
tion, the characters that follow these
identifiers indicate the exact nature of

the JSP tag, which completely specifies
its behavior.

The first tag in a JSP file is generally
the page directive, which defines the
global attributes of the file, such as the
scripting language, and allows the JSP
developer to import Java packages. For
example, the following page directive
indicates that the JSP page uses Java
(which is the default, and of course, what
we’re interested in using!) and imports
the java.util package:

<%@ page

language="java"

import="java.util.*"

%>

After this, we can start to include Java
code in our file, which can be explicitly
done in three different tags: the declara-
tion, the expression, and the scriptlet.
The first two tags are processed during
the HTTP translation stage, while the
third is processed for each user request,
although certain optimizations can be
applied by your JSP server. This can have
important design and performance
implications, so take care when using
them.

The declaration tags are used for
variables and methods used later within
the current JSP file. For example, the fol-
lowing tag declares a connection object
that we can use throughout the JSP file:

<%! Connection connection %>

The expression tags are important
because they’re evaluated, and the result
replaces the expression tag in the result-
ing JSP page. For example, given the fol-
lowing JSP line:

Our output = <%= "Hello World" %>,

Serving Web Pages

Java COM

26 JANUARY 2001

J A V A B A S I C S
after the JSP HTTP translation stage, the
resulting line will be:

Our output = Hello World

To really perform some serious
dynamic processing, however, you need
to utilize a scriptlet, which can do a lot
more than either the declaration or
expression tags allow. For example,
given the previous declaration tag that
declared our connection object, we can
obtain an actual connection object in
the following scriptlet:

<% connection =

DriverManager.getConnection(

"jdbc:acme://localhost:1234/jdbc",

"java", "sun") ;

%>

An important issue with scriptlets is
that they can span multiple lines and
even be intermixed with HTML tags, as
in the following example:

<% while(rs.next()){ %>

 <%= rs.getString(1) %>

<% } %>

where we iterate through a result set,
printing out the first column in each row
as an HTML list item from an unordered
list. Notice how the scriptlet is split over
three separate lines, with HTML tags
and an expression JSP tag intermingled.
In particular, we have the closing curly
brace for our result set iteration on a
separate line in its own scriptlet tag.

To improve the overall maintainabil-
ity of the Java code in a JSP file, you

should, of course, liberally comment the
programming structure and algorithms.
You could do this with an HTML com-
ment known as an output comment in
JSP parlance, like this:

<!--This will establish a connection

to the Corporate payroll database -->

But since HTML comments are sent
to the browser where they can be viewed
along with the rest of the source code for
the HTML page, this may not be what
you want. Fortunately, there’s another
choice for commenting your JSP file,
namely hidden comments, which are
removed by the JSP processor and there-
fore not sent to the browser. To convert
the preceding output comment to a hid-
den comment, change the enclosing
tags as follows:

<%--This will establish a connection

to the Corporate payroll database --

%>

Output comments can still be quite
useful, however, since placing JSP
expression tags inside them can dynam-
ically alter the resulting comment. In
this example (albeit a bit contrived), we
can dynamically create an HTML com-
ment that indicates which day of the
current month the page was generated:

<!-- This page was generated on

<%=Calendar.get(

Calendar.Day_Of_Month)

%>

If that’s all there was to JSP files, they’d
still be quite useful, if not lengthy and
somewhat unwieldy to implement. JSP

was, however, designed to work within
the JavaBeans framework. As a result, you
can encapsulate specific concepts inside
a JavaBean and access the object using
the JavaBeans framework. Furthermore,
JSP allows development of custom tags to
encapsulate routine operations. As these
topics could span several books in their
own right, we won’t cover them here, but
look online at the JSP home page
(http://java.sun.com/products/jsp) for
more information.

Letting the Cat Out
To actually use JSP, you need to run a

server process that can convert JSP files
into HTML pages that can be rendered
on an ordinary browser. This server can
be a Web server that’s able to serve Java
pages, an application server, or even be
incorporated into an IDE (e.g., JDevel-
oper). I strongly recommend, however,
that you use the Tomcat server from the
Apache Software Foundation. Before
discussing how to connect to a database
using JSP, we need to get the server and
set it up.

The first thing we need to do is
download the entire server package. Fig-
ure 1 shows the home page for the Jakar-
ta-Tomcat server project (http://jakar-
ta.apache.org/tomcat/index.html),
where you can obtain the latest version
of the software (currently 3.1, but maybe
something different by the time you
read this article). The Tomcat server is
the official reference implementation
for both JavaServer Pages and Servlets.
From the Tomcat home page you’ll want
to click on the “Download Binaries:”
link, which takes you to the binary
downloads Web page. Click the first
Tomcat link under the “Release Builds”
heading. This should take you to a direc-
tory listing for the current release builds
for several Jakarta projects. The only one
we’re interested in right now is the Jakar-FIGURE 1 The home page for the Jakarta–Tomcat project

‘‘…Scriptlets…
can span

multiple lines
and even be

intermixed with
HTML tags…

’’

Java COM

28

J A V A B A S I C S
ta-Tomcat project; hence click on the
jakarta-tomcat.zip file to download the
necessary files.

Once you’ve downloaded the correct
file you’ll need to extract the zip file’s
contents. By default, all files will be cre-
ated in a new directory named jakarta-
tomcat. Thus if you extract everything to
the C:\ drive, all will be in the directory
“C:\jakarta-tomcat\”. While you can
actually configure the Tomcat server to
properly integrate with a variety of dif-
ferent production-quality Web servers,
including Apache or IIS, you can also
have it run as its own Web server.

The Jakarta-Tomcat server is a Java
application and, as a result, runs in a
Java Virtual Machine. To start the serv-
er, however, we need to run only the
startup batch file (or startup.sh on
UNIX systems), which sets up all the
necessary environmental variables
before actually creating a new JVM and
running the Tomcat server. Conversely,
to shut down the server we need to run
only the shutdown batch file (or shut-
down.sh on UNIX).

Since JSP files need to be compiled
by the server, there’s one last caveat
before running the startup script; the
Java compiler (i.e., the class file that
contains javac) needs to be in the
classpath environmental variable. This
can be done by directly modifying the
appropriate script files, by placing the
tools.jar file in the jakarta-tomcat\lib
directory, or by placing the tools.jar file
in your classpath and running the
startup script from a command
prompt. I prefer the command prompt
mode for startup as shown in Figure 2,
since I generally have other JAR files
that need to be in the classpath of the
JVM that’s running the Jakarta-Tomcat
server (e.g., JDBC driver JAR files). For
example, as demonstrated in Figure 2,
we first set up the classpath to include
both tools.jar (which in this example is
in the C:\jdk\lib directory) that con-
tains the javac class file, and also
acme.jar (which in this case is in the
C:\java\lib directory). Remember that
acme is the fictional JDBC driver we’ve
used in previous articles. For com-

pleteness sake, the shutdown sequence
is also shown.

If the server starts up properly,
you’ll be able to view the reference
information as well as demonstrations
of both JavaServer Pages and Servlets.
This can be accomplished by browsing
to the URL: http://localhost:8080/. The
result for version 3.1 of the Tomcat
server is shown in Figure 3. By follow-
ing the links to JSP examples, you’ll be
able to see JSP demonstrations. If the
JSP examples don’t work, the tools.jar
file is probably not in your classpath
variable.

Hooking into a Database
Now we can finally get down to the

business at hand, namely dynamically
extracting data from a database into our
JSP file. Assuming we have already creat-
ed and populated a database with the
following schema:

CREATE TABLE Contacts (

First VARCHAR(20) NOT NULL,

Middle VARCHAR(20) NOT NULL,

Last VARCHAR(20) NOT NULL,

Phone INT,

Age INT

) ;

we now want to build a Web page that
displays all the contacts in our database
as an HTML table.

The first step is to write out our page
directive:

<%@ page

errorPage="error.jsp"

language="java"

import="java.sql.*"

%>

This directive first specifies that all
errors will be handled by a special JSP
file called error.jsp (more on this later).
The rest of the directive indicates that
we’ll be using Java (big surprise) and
that we want to import the java.sql
package. After this we have some vari-
able declarations that go in their own
declaration directive:

<%!

Connection connection ;

Statement statement ;

ResultSet rs ;

ResultSetMetaData rsmd ;

%>

We can now include our normal
HTML tags that start our HTML
files (you may have something
more fancy that relies on cascading
stylesheets):

FIGURE 2 A demonstration of starting and stopping the Tomcat server in Windows
2000 from the command prompt window

FIGURE 3 The starting Web page for the Tomcat server version 3.1

JANUARY 2001

Java COM

30 JANUARY 2001

J A V A B A S I C S

AUTHOR BIO
Robert Brunner is a

member of the research
staff at the California
Institute of Technology,

where he focuses on very
large (multiterabyte)

databases, particularly on
KDD (Knowledge

Discovery in Databases)
and advanced indexing

techniques. He has used
Java and databases for
more than three years
and has been the Java
database instructor for
the Java Programming

Certificate at California
State University, Pomona,

for the past two years.

<HTML>

<HEAD>

<TITLE>

ACME Database JSP Demonstration

</TITLE>

</HEAD>

<BODY>

Now we need to do some of the
heavy lifting, so we’ll place our JDBC
code in a scriptlet:

<%

Class.forName(

"com.acme.sql.JDBCDriver") ;

connection =

DriverManager.getConnection(

"jdbc:acme://localhost:1234/jdbc",

"java", "sun") ;

statement =

connection.createStatement() ;

rs =

statement.executeQuery(

"SELECT * FROM Contacts") ;

rsmd = rs.getMetaData() ;

%>

In this scriptlet we load our acme JDBC
driver into the JVM, establish a connec-
tion to our database, create a JDBC state-
ment object, execute the SQL statement
that populates our ResultSet object, and
obtain the ResultSet Metadata informa-
tion. We can now start our HTML table:

<TABLE

WIDTH="100%"

BORDER="+5"

>

and dynamically output the header row
for our table, which we get from the
Result Set Metadata ColumnLabel
method.

<TR>

<%

for(int i = 1 ;

i <= rsmd.getColumnCount() ;

i++) {

%>

<TH>

<%= rsmd.getColumnLabel(i) %>

</TH>

<% } %>

</TR>

We’ll now want to iterate over all
rows in our ResultSet, converting each
row of our ResultSet into a row in our
HTML table:

<% while(rs.next()) { %>

<TR>

<% for(int i = 1 ;

i <= rsmd.getColumnCount() ;

i++) {

%>

<TH>

<%= rs.getString(i) %>

</TH>

<% } %>

</TR>

<% } %>

We can now finish off our HTML
tags:

</TABLE>

</BODY>

</HTML>

The last step is to save all these JSP
and HTML tags into a file called
mdb.jsp. To have the Tomcat serve this
file to our Web browser, we need to put
it into an HTML hierarchy. While we

could configure Tomcat to automatical-
ly look in our development directories,
I’ll take the easier approach and just
copy mdb.jsp to the directory where
Tomcat looks for its example JSP files. In
our installation scenario, this is the
C:\jakarta-tomcat\webapps\exam-
ples\jsp directory. Once you’ve copied
our JSP file to the correct directory,
restart the Web server and browse to
http://localhost:8080/examples/jsp/m
db.jsp. When I modify mdb.jsp to con-
nect to my contacts database, I get the
result shown in Figure 4. To make this
example work, you’ll need to have the
contacts data in a database table, mod-
ify mdb.jsp to use the appropriate JDBC
driver and database, and finally, add
your JDBC driver to the classpath before
starting up the Tomcat server.

You may recall that at the start of
our JSP page, we had the errorPage=
“error.jsp” line in our page directive.
You may also have noticed that none of
the usual try...catch blocks were wrap-
ping our database code. If so, kudos,
you’re very observant. In any event,
these two are intimately linked, and
one of the things that makes JSP so
quick to develop Web applications is
that you don’t need any exception-
handling code in your JSP file. Instead,
you designate an error page that han-
dles all error conditions. You can have
one error page for all JSP files or sepa-
rate error pages for every JSP file. The
level of detail is up to you. Since the
error page is a JSP file, you can do quite
a bit inside them, including simple
things like changing the color or fonts
of the HTML page to automatically
contacting administrators with error
conditions.

Conclusion
While this example is somewhat

contrived, it demonstrates all the rele-
vant concepts needed to connect a JSP
page to a database. In a production
system a better approach would be to
encapsulate the database operations in
JavaBeans, which would simplify their
reuse and maintainability. Since JSP
files can also be connected to Servlets
(which can maintain state and are
higher performance than JSP), we
could also push our query interactions
to a Servlet and leave the JSP to handle
the user interactions. Clearly there’s a
lot more to explore here than I can fit
into one article. Hopefully you’ll now
feel confident to play with this exam-
ple and the other JSP articles in this
issue.

rjbrunner@pacbell.net

FIGURE 4 The resulting Web page for the mdb.jsp file. The data is entirely fictional.

Framework Framework

A Model

View Controller

A Model

View Controller

for JavaServer for JavaServer
PagesPages

JavaServer Pages is a hot technology right now, as all Java developers are aware. In its simplest explanation, JSP provides the ability to combine Java

code with HTML content to achieve dynamic content output from a single source file. Behind the scenes the JSP is compiled into a Java servlet that can

be run in any compliant Java servlet engine/container. In essence, a JSP is a way to dynamically create a servlet with a large amount of HTML output

and some Java code/logic. So instead of putting a large number of out.println("<HTML CODE HERE>"); statements in a servlet with very little logic, a

developer can simply create a JSP page containing standard HTML and a little logic. The JSP compiler will compile the page into a servlet, handling all

the ugliness of those out.println() statements.

WRITTEN BY SCOTT GRANT AND
JOSEPH CAMPOLONGO

JANUARY 200132

F
E

A
T

U
R

E

Java COM

Java COM

34 JANUARY 2001

Given the nature of Web-based applications,
this technology is obviously useful, but it comes
with some potential costs. Embedding Java code
within HTML can lead to maintenance night-
mares, with huge files that require both an
HTML “Web smith” and a Java developer to
maintain them. A JSP framework that could pro-
vide a separation of the rather static content of
the HTML code from the dynamic content typi-
cally provided by the Java code would be a boon.

Another problem with JSP for Web-based
front ends and especially for application service
providers such as CascadeWorks is the chal-
lenge of using a technology like JSP to create a
client front end that emulates a lot of the func-
tionality of a standard client application’s GUI
interface through the Web browser. In addition
to needing a separation of HTML content from
Java code, it would be nice to emulate the rather
event-driven mechanisms and visual compo-
nents of a GUI framework, such as the one pro-
vided by the Swing framework of the Java Foun-
dation Classes Library (JFC), to try to achieve
similar functionality for a Web-based interface.
However, one of the problems we faced at
CascadeWorks is that JSPs are essentially a
“page-driven” technology. That created a few
problems for us (which we’ll address) and led to
an interesting solution in creating a JSP frame-
work that would allow pages to be constructed
quickly through a template-like process using
sets of standard components and events.

Building a Model-View-Controller
Framework for JSPs

Most GUI frameworks use a Model-View-Con-
troller (MVC) design pattern. This means that the
data (Model) is separated from the visual presenta-
tion (View) of that data, and the two are tied togeth-
er, typically, by a controller of some kind, which can
be another class, an underlying set of events, both,
and so on. In creating an MVC for a Web-based
application using JSP, we must look at what’s need-
ed. We investigated many different attempts at
such a framework, including the Struts project,
which is part of the overall Jakarta/Tomcat Open
Source project. Before we discuss our solution,
though, a short digression on Struts is called for.

Struts
Struts is a Tomcat subproject whose goal is to

“…provide an Open Source framework useful in
building Web applications with Java Servlet and
JavaServer Pages (JSP) technology. Struts encour-
ages application architectures based on the
Model-View-Controller (MVC) design paradigm.”

Struts provides a model for seemingly every
possible HTML element as a JSP Taglib, which
allows them to easily access and be accessed by the
server code. Struts then ties every request to an
action object through an ActionMapping. So when
a request comes in to the server the perform()

method on a specific action instance will be called.
Struts also provides JSP Taglibs that perform logic
that might be needed by the display, such as itera-
tors and comparators. These Taglibs and the sup-
porting framework solve the problem of having
logic and therefore JSP scriptlets in the HTML page.

We faced another problem at CascadeWorks,
though, that created a need beyond what a
page-centric component model like this would
support. We wanted to do cleanup for an includ-
ed page after it was rendered but before the next
included page was rendered. For this we needed
a framework that would render an included
page, then call an event for that page. This
meant we needed to build up more full-fledged
application functionality in a JSP framework,
and for that we really need a full-fledged event
model that breaks the page-centric model of JSP,
something that’s currently lacking in Struts.

Our JSP Framework Wish List
When looking at an MVC design for our JSP

pages, there are a few things we’d like to have:
1. The ability to support a container model so that

one JSP page can be included within another
with no modifications of either being necessary.
This would help us create templates for includ-
ing pages within pages, so that a page could con-
tain headers, footers, menu bar columns, and so
on, yet let us easily include or swap out individ-
ual pages in a “main” display area dynamically.

2. An event model, in case we need to do any cal-
culations before or after a page is displayed. In
other words, we’d like to be able to fire an
event just before a JSP page is displayed and
just after. We’d also like to fire events on all the
pages that make up one display (our frame in
the source code) before we begin displaying
the first page. So along with a preJspDisplay
event per page, we’d also like to have a
preWindowDisplay event, which is invoked
for each frame and wraps a set of pages.

3. The ability to support a component model
so that commonly used HTML data input
elements can be reused easily.
Looking at the first of these wish-list items

we see that the JSP specification allows for
including one JSP page within another. Let’s
look at the two ways it allows us to do this.

One way is to use a JSP directive, <%@ include
file=… %>. When the JSP compiler comes across
this directive it adds the interpreted code of the
included file directly in the service() method of
the servlet the compiler is creating.

In Tomcat’s example for <%@include …%>,
the compiler generates the following code to
insert foo.jsp inside include.jsp (removing the
generated comments):

out.write("<!--\r\n Copyright (c) 1999

The Apache Software Foundation. All rights

\r\n reserved.

\r\n-->\r\n\r\n<body

bgcolor=\"white\">\r\n<font

color=\"red\">\r\n\r\n");

out.print(System.currentTimeMillis());

Java COM

36 JANUARY 2001

out.write("\r\n");

The other way is to use a JSP action, <jsp:include page=… />. When
the JSP compiler comes across this directive it adds a
pageContext.include() to the servlet the compiler is creating.

From the same example the following code is generated for the
<jsp:include …/>:

String _jspx_qStr = "";

out.flush();

pageContext.include("foo.jsp" + _jspx_qStr);

The problem with both of these solutions is that neither allows for
item number 2 in our wish list. We’d like to have our framework support
an event model. In our case this means that before and after a page is
displayed (written out to the output stream), we’d like to have the frame-
work fire an event. Neither the include directive nor the include action
allows us to support the kinds of events we want and have included
pages. So to support a container model as well as an event model (of the
type specified), we can’t use the provided JSP include functionality.

We’ll return to a specification for the event mechanism in more detail
later. Now let’s look at the third item on our wish list – the ability to have com-
ponents. This can be relatively straightforward if we approach components
the same way the Struts project did. Every common HTML element or sets of
elements or even logic can be created as Taglibs with a reasonably simple
interface into the server code. But what we’d really like is to have our frame-
work fire events on the components as well, initializing them with data when
necessary and storing out any of the data they’ve acquired when necessary
(this would involve tying a binding mechanism to back-end storage).

Unfortunately, we were unable to solve this problem without, as was
done at CascadeWorks, preregistering all the components and precompiling
all the JSP pages. This is a separate and involved discussion and beyond the
scope of this article. So we’ll simply use the Struts’ conception of compo-
nents – it’s a Taglib that’s a display-oriented item with its own well-defined
set of events that are specified in the JSP 1.1 spec and leave it at that.

Our MVC and EVENT Framework
We’re going to put together a framework that uses our own mechanism

for including pages and supports a full event mechanism. Components are
more of an adjunct to the framework than an integral part of it, so we won’t
discuss them here beyond repeating that the Struts model is a good one.

Our framework starts by providing support for our container concept and
event model to the JSP pages we’ll be using. This support comes in the form of
“backing” document objects. Every JSP page will have a corresponding docu-
ment object associated with it and vice versa. The collection of JSP pages
(remember, we’re going to be including JSP pages within JSP pages) that make
up the client’s view will be modeled by a frame object, which is simply a con-
tainer for the JSP page’s backing document objects. See Listing 1 for an exam-
ple of a JSP page in our model. (Code listings can be found on the JDJWeb site.)

This acts as the outer page for every single one of our displayed pages.
It will always be displayed. In its turn it includes a JSP page that acts as a
header and one that acts as the main page. Each of these documents may
include other documents. Its backing document class is in Listing 2.

This class defines itself and the page it references, allowing the con-
troller to access the backed JSP document through this class. It also
extends the abstract class document, which defines all the events that
may be called on the document (see Listing 3).

The controller will fire each of these events on every document with
a JSP page to be displayed. Every backing document class also contains
a ModelContext object, which allows it to access the ServletContext,
HttpRequest, and HttpResponse objects of the current request.

The controller is the linchpin of this setup, driving our event model.
It’s the single access point of our system, loading every page, and works in
conjunction with the frame to display the pages requested (see Figure 1).

The controller is represented by a single controller servlet that per-
forms the following actions:

1. Creates a frame object that represents the HTML page to be displayed
based on the incoming URL.

2. Loads up the frame to be displayed.
3. Initiates the framePreProcess() events on the document objects that

make up the frame to be displayed.

4. Initiates the display of the frame to be displayed.
a. The frame object that represents the frame to be displayed fires

the pagePreProcess() event on each document object about to be
displayed.

b. It gets the document’s associated JSP file and displays it.
c. It fires the pagePostProcess() event on the just displayed Docu-

ment object.

FIGURE 2: JSP framework event sequence diagram

FIGURE 1: Simple MVC JSP framework overview

Java COM

38 JANUARY 2001

5. Initiates the validate() events on the document objects that make up
the previous displayed frame.

6. Fires any user-initiated events on the document objects that make up
the previous displayed frame.

7. Initiates the framePostProcess() events on the document objects that
make up the frame that was just displayed.
Note that in number 6 we support a special type of event – a user-

defined type. For example, a user can press a button on a page, and the
controller will call the defined event for that method on the specified
document. Figure 2 shows the sequence of events within the framework.

Two related problems remain unresolved. How does our framework
allow pages to be used as a template (i.e., to have other JSP pages included
within them), and how do we represent such a page in a URL so that our
event mechanism actually works? Any page in our framework that wishes to
include another page within it must use a special Taglib, include_document.

The include_document Taglib takes one attribute – location – which is
simply a placeholder ID. Whichever JSP page is associated with that place-
holder ID is included by a call to RequestDispatcher.include(). The associ-
ation between the location attribute ID and the JSP page to be included is
made for each frame to be displayed in an XML document. For example:

<?xml version="1.0" encoding="ISO-8859-1"?>

<doc location="MAIN" class="com.jdjarticle.jsp.document.MainDocu-

ment">

<doc location="HEADER" class="com.jdjarticle.jsp.document.Head-

Document"/>

<doc location="SUB_MAIN"

class="com.jdjarticle.jsp.document.SubMainDocument">

<doc location="PAGE_01" class="com.jdjarticle.jsp.docu-

ment.FirstDocument"/>

</doc>

</doc>

This XML document describes the documents each document will

contain using the hierarchical nature of XML, and defines the placehold-
ers each document will fill in their respective parent document/JSP pages.

URLs are then mapped to these XML documents in another XML
document, called alias.xml.

<aliases>

<alias name="/main">

main.xml

</alias>

<alias name="/second">

second.xml

</alias>

</aliases>

This means that the URL controller/main will be mapped to the
main.xml, which in turn allows the controller to create a frame object to
display. Similarly, controller/second will be mapped to second.xml.

Summary
JavaServer Pages is a powerful technology that can provide many ben-

efits to companies requiring dynamic Web front ends with maximum
server-side flexibility. It’s our hope that this article demonstrates ways in
which the flexibility and features of JSP can be leveraged to provide more
complex features, such as containers, document templates, and con-
troller-based events, found in a typical GUI-style MVC design.

AUTHORS BIOS
Scott Grant is chief architect and lead developer for CascadeWorks, Inc., and a Sun Certified Java developer.
He has 15 years of diversified engineering experience..

Joseph Campolongo, a senior developer with CascadeWorks, Inc., is a Sun Certified Java developer.

sgrant@cascadeworks.com or scottg2@home.com • jvc@speakeasy.org.

JDJ Mail

To the Editor:
My company was forced to go to Solaris because serious bugs in

the Linux threads library caused multithreaded (hundreds of
threads) server-side applications to crash. Glibc is so buggy as to be
useless for high-scale, multithreaded Java apps. I haven’t seen a sin-
gle JDK under Linux that won’t crash when I run my server code. It
works flawlessly under Solaris 8 Intel and also under NT/2000.

a disenchanted Linux lover—Ron
roncemer@gte.net

To the Editor:
I love reading JDJ. It’s packed with

lots of useful information [about]
developments in Java-related tech-
nologies. However, I’d like to point
out some misinformation in the “Eif-
fel-Like Separate Classes” article in
the November 2000 issue [Vol. 5, issue 11]. The author, Francisco
Morales, mentions that he used the JavaCC tool (which used to be a
tool from Sun Labs but is now supported by www.metamata.com) to
implement the preprocessor for his tool. He claims that the JavaCC is
based on ANTLR. That is untrue. Most likely JavaCC and ANTLR are
descendents of Terence Parr’s PCCTS. You can read all about it at
www.metamata.com/javacc/javaccstory.html. In fact, JavaCC and
ANTLR have taken different approaches to solving the problem of
parser generators.

Also there’s no reference to JavaCC authors and JavaCC-related
literature. I hope the misinformation is corrected.

—Sandip Chitale
schitale@selectica.com

In my article I said the following: “JavaCC is based on ANTLR
technology; also, it is an LL(k) predicate-based parser generator.” This
statement is based on a forum celebrated on August 18, 1997, which
you can read at http://developer.java.sun.com/developer/communi-
ty/chat/JavaLive/1997/jl0819.html. The speaker was Sriram Sankar, a
software developer and manager at SunTest.

To the question: “How does JavaCC compare with ANTLR?” He
answered: “JavaCC is based on ANTLR technology. We built JavaCC
since we got quite used to ANTLR (in the C world) and did not want
to go back to a LEX/YACC solution with Java.”

So I think everything is clear. As a JavaCC user I took this discus-
sion as a starting point for my work, and I think everything that I
mentioned was right.

If you get more information on it, please don’t hesitate to
contact me.

Kind regards
—Francisco

To the Editor:
I read Alan Williamson’s column, Industry Watch, in

JDJ all the time. He’s very funny. Good job and keep it
going because we appreciate his insight!

Best regards and thank you for your time.
—Christopher Tava

christophertava@hotmail.com

To the Editor:
Just comments on your article “Why Linux Lovers Jilt Java” [Vol.

5, issue 12]. You ended with: “The really avant-garde are already
poring over Microsoft’s C#, which Microsoft fancies is a sort of
super-Java blending the best of C++ and Java, and they’re keeping
their fingers crossed that it won’t be a Windows-only creature.”

You’re right, I think the Linux community has much higher
hopes for Java than C#. The “poring over” is only to satisfy an acad-
emic curiosity and possibly get some new ideas.

What would be really interesting is if MS did with C# what Sun is
doing with Java – make it run anywhere, but then go farther and
GPL it. This would effectively have MS using the free software com-
munity against Sun. I doubt this will happen though, the technical
barriers are huge and MS has even bigger cultural barriers.

—James Christopher Irrer
<irrer@eecs.umich.edu>

To the Editor:
In your article on Java serialization “Secrets of Java Serialization”

[Vol. 5, issue 11] you stated on page 80:
“You can subclass an object to make it serializable, but this only

works if you’re the one constructing it. If you need a deep copy of a
web of objects, some of which are created inside libraries that you
don’t have the source for, serialization may be your only alternative.”

This seems to imply that your Cloner.clone method works on
any object, even those that don’t implement the Serializable inter-
face. However, when I tried to use your Cloner class to clone an
object that didn’t implement the Serializable interface, I got a
java.io.NotSerializableException. The Java documentation on this
says that ObjectOutputStream.writeObject will only work on
objects that implement the Serializable interface….

Am I missing something? It seems your example doesn’t work.

—William Shulman
williams@babycenter.com

Sorry, we wrote “serializable” but meant “cloneable”! You can
“pseudo-clone” things not cloneable using serialization, but you
can’t, as you point out, serialize things that are not serializable.

We apologize for the slip-up.

Regards,
—Gene Callahan

gcallah@erols.com

To the Editor:
Just wanted to send you some kudos on your

“Linux Focus” issue. I had time to read only a few
of the articles, but it already looks great. I hope it
helps other Java developers to embrace Linux. I’ve
been doing most of my Java work on Linux for the
past two years, and I wouldn’t trade it for any-
thing.

Anyway, no response neccessary, I’ve just always
wanted to send an e-mail to JDJ for a great issue and a great magazine.

—Charles Fulton
fultoncr@ucarb.com

R E A D E R F E E D B A C K

Letters to the Editor

40 JANUARY 2001

Java COM

May They Rest in Peace
As some of you know, I’ve been run-

ning a wee miniseries here chronicling
some of the less fortunate dot-com
companies and their demise from the IP
network. Over the past three months
I’ve listed many of them. Sadly, the list
only gets longer. One thing I’d like to
point out: we seem to be in good com-
pany. The Wall Street Journal has pub-
lished a list of failed dot-coms – the
exact same companies I’ve been high-
lighting. Coincidence? You decide.

Should we as Java developers be wor-
ried? For example, according to the WSJ,
five companies alone that have filed for
bankruptcy account for around 700 peo-
ple now in the market looking for work.
Who knows what skill levels these peo-
ple have? It would be a bit naive of me to
assume that all of them were Java peo-
ple. A very small percentage, I’d wager.
So I think we needn’t worry about our
jobs just yet.

I’ve been thinking about why a lot of
these companies are going down the
tubes, so to speak. You could say to your-
self, Why should I care? I don’t work for
them. Well, that’s one way of looking at
it, but, especially here at n-ary, when a
dot-com failure hits the headlines, fam-
ily and friends always look to us to ask
why, and if it’s going to affect us or not.
Generally no, but these failures aren’t
doing the industry as a whole any good.
For people that only see black and
white, we can easily be tarred with the
same brush, and this can be detrimental
to everyone.

I sometimes think the media has a
big hand in it. It appears to be in love
with stories about Internet start-ups
going down. The bigger the number lost,

the better headlines it makes. In other
sectors, if a company is to fail it makes it
to the headlines only if more than a hun-
dred jobs are at stake. Even at that, it’s
generally only the local headlines. It
would appear the Internet entrepre-
neurs make for better reading.

It’s well known that the majority of
companies fail in their first two years of
trading. Only a small minority make it
past this milestone. Interestingly
enough, I couldn’t sleep one night and
caught an analyst on the BBC News 24
channel talking about Internet years
being something similar to dog years:
one year of bricks ’n’ mortar is equiva-
lent to five to seven years for an Internet
company. If this is true – and I can see
some logic in it – these CEOs should be
commended for making it past six
months, let alone two years. The same
report looked at how salaries were start-
ing to come down in this sector as com-
panies struggled with their cash flow
every month. Running a company
myself, I know only too well the need to
keep a steady cash flow. A lot easier said
than done at times.

I’ve been digging around looking at
various reasons why these companies
fail. Surprisingly, there isn’t one obvious
common denominator. Many reasons
are cited: cash flow, overinflated expec-
tations, high salaries, delivery problems,
high cost of technology – the list goes
on. But I guess this is business; every
case is different.

Granted, I have to hold my hand up
and admit some responsibility here. For
what am I doing but drawing attention
to failures? I’m as bad as the journalists
I’m chastizing. So for that I bow my head
in shame and slowly scuffle out of the
room.

Wireless
What do you think of this wireless

revolution we appear to be going
through? Are you sitting on the fence
waiting for the hype to die down, or are
you developing w-applets for your
Palms and Nokias? I’ve been following
this world very attentively, and had my
son not decided to make an appearance
when he did, I would have been at SYS-
CON Media’s Wireless DevCon Confer-
ence in San Jose last month. On the
whole, I think it’s a great time we’re in, as
we’re just now seeing the move away
from our desks. God only knows what
my son, Cormac, will be used to when
he heads off to university.

Reading various articles on where
wireless is making inroads into the office
environment, I can’t help thinking we’re
missing something. Yeah, sure, we’re
networking our devices without the
dreaded wires. So what? What difference
does that really make? House phones
had this a long time ago – the ability to
have a base station and have the phone
anywhere in the house. But not all is
rosy in the world of wireless. Ask my
father. He curses about the fact he can’t
find the phone any more; at least when
it was tied to the wall he knew where to
go and get it.

To this end, I can understand exactly
where people like my father are coming
from. So the wireless industry has to
start innovating and stop making the
devices that are already wireless. We
need to see a new wave of devices that
work with us and don’t become a novel-
ty or hindrance. I for one lose my mobile
phone on a regular basis. I then have to
ring it and play hide-and-seek to
retrieve the bugger. I live in fear of the

WRITTEN BY
ALAN WILLIAMSON

W
hat a busy time it’s been for us all. I’m not talking about the prepara-
tion of our titles. No, I’m referring to the fact that we seem to be in a
mood for producing babies. First,Ajit Sagar, our resident XML guru,
and his wife Seema gave birth to their first child this past summer.
Next was Miles Silverman, SYS-CON Media’s sales dude, in early
November. Now me.Yes, I am now the proud owner of a brand new
baby boy. Cormac Robert Williamson logged onto the world on St.
Andrew’s day (November 30) here in Scotland. Being his father’s son,
he has been hard at work already and by Day #2 he had his own Web
site up and running at www.cormac-williamson.com.That’s ma boy!

Must Be a Full Moon . . .

42 JANUARY 2001

Java COM

44

time I can take everything off my desk
and take it with me – I’ll never find it.

The biggest pain I find is power.
Plugging in a small RJ45 cable is no big
deal for me. This is easy. But the power?
This is where the work for wireless
should go. I’m not a physicist, so I have
no idea if the Star Trek technology of
having wireless power is possible. Can
someone with a physics background
come back to me on this? Wouldn’t this
be the ultimate dream? The ability to
draw power from the airwaves, so to
speak. This would impact people in
every walk of life and have a profound
effect on the cabling industry as a whole.

Imagine, if you will, your toaster. Not
only would it have an IP address, but it
would be a small plastic box that sat
anywhere in the kitchen and browned
whenever bread was popped in. No ugly
power cables draping over the drain
board. Hurrah!

That’s the wireless world I’m looking
forward to.

Way Cool
In December I was introduced to

some very sexy Java at work. In fact, I
was so excited that I simply had to collar
the main man behind it for an interview,
which, I’m proud to say, appears in this
very issue of JDJ. I’m referring to Steve

Rock from EGBS. If you haven’t read the
interview, go and read it now. Bookmark
this line and come back to me.

Read it? Isn’t that just wild? Okay. For
those of you that didn’t bother going to
read it, allow me to fill you in. What
Steve and his team have built is a full
media server that allows the producer,
and viewer, to bookmark and tag partic-
ular areas within a video and attach
either links or notes to them.

For example, say you were watching
The Matrix with Samuel L. Jackson and
you thought the sunglasses he was
wearing looked pretty cool. Well, using
Steve’s technology, you could simply
click on the glasses and be taken to a
Web site for more information or to pur-
chase them. This stuff is years ahead of
its time. Only when we start watching
on-demand content will we see this kind
of technology come more into our lives.

This sort of thing opens up the
world…and not just to the advertising
community. You could, for example,
click on a particular on-screen character
and be fed information pertaining to
that character’s background and history.
The uses for this sort of interactive tag-
ging are endless and very exciting.

But what gives me the extra buzz is
that it’s all done in Java. This blows my
mind. Allow me to tell you why. As a
developer, and in this instance a Java

developer, it excites me to be in an
industry that can benefit and touch so
many people’s lives. To be able to sit
down with your family of an evening and
look at how they watch a particular TV
program or movie, and then go to work
the next day and develop a new interface
or improved way of working. We are in an
exciting industry and one that touches
every other industry. We are so lucky that
we can be in a position to explore many
of our passions at the same time.

For Steve and his team, working on
their Spectrum product allows them to
get closer to the world of streamed con-
tent. It takes them into fields of produc-
ers and directors, and I for one, being a
movie buff, wish them all the best.

If you and your team are putting Java
to use in a different way, please drop me
a line. I’d love to hear from you.

And with that, the score of Armaged-
don is coming to an end, and I had bet-
ter close off and head on home to see
how Cormac is doing.

AUTHOR BIO
Alan Williamson is CEO of the first pure Java company in
the UK, n-ary (consultancy) Ltd (www.n-ary.com), a Java
solutions company specializing in delivering real-world
applications with real-world Java. Alan has authored two
Java servlet books and contributed to the servlet API.

alan@n-ary.com

JANUARY 2001

Java COM

Java COM

46 JANUARY 2001

alexr@fiorano.com

Of course, the developers who did
the customization are long gone.

At some time between then and now
new features were needed by the mar-
keting department. The development
staff was afraid to make changes in the
poorly documented code and, besides,
the marketing department’s needs had
little to do with the accounting depart-
ment’s use of their system. So armed
with a C compiler, they added an entire-
ly new system that provided the features
they required. But it also ended up
duplicating some of the features and
data of the existing system because it
needed that information and couldn’t
easily extract it.

Now we can add a new term to our
vocabulary: stovepipe processes. Each
system treats the customer indepen-
dently, so it’s difficult to obtain a com-
plete view of the company’s relation-
ships with any given customer. Now, in
the age of e-commerce, the company
has decided that customers need to see
their complete profiles online and you,
the Java systems architect and develop-
er, have the task of creating the Web
application that will do this. Now it’s
your problem.

The issue resolves to this: “How do
we obtain a single view of the customer
across all these systems?”

Architecture for the Solution
The problem can be solved by build-

ing an architecture around MQSeries
and MQSeries Integrator (MQSI).
MQSeries, IBM’s messaging and queu-
ing middleware, provides connectivity
across multiple systems, allowing differ-
ent applications on different platforms
to communicate with each other in a
straightforward and reliable manner.

MQSI allows you to isolate client appli-
cations that request data from the com-
plexities of where and how legacy appli-
cations handle the data.

This architecture allows you to for-
mat client requests as required and then
route them to the appropriate systems
according to a central rules database. At
the same time, this architecture is flexi-
ble and can be easily extended as new
systems or business requirements are
introduced.

Strategy
Figure 1 shows the design of our pro-

posed solution. We’ll adopt the following
strategy:
1. Enable the back-end applications

with MQ.
2. Develop MQSI message formats and

flows that route and translate data
between the legacy data formats and
XML – our format of choice for the
new Web application.

3. Deploy the servlet and JSP that will
handle client requests on the Web-
Sphere Application Server, Advanced
Edition.

4. Develop the business logic and front
end with VisualAge for Java and Web-
Sphere Studio. This allows us to take
advantage of their tight integration
with the application server.

For the purposes of this article we’ll
assume that both back-end systems
have already been MQ-enabled by their
respective departments. Because the
older system could stand only limited
modification, a wrapper script was writ-
ten to capture the binary output stream
and place it on a queue. This binary
record format can be described using
the C language type definition shown in
Listing 1.

For the newer legacy system, the
group maintaining it managed to modi-
fy the code to translate its data structure
into XML before placing it on the queue.
Listing 2 shows an example record from
this application. We’ll configure a new
message format in MQSI, define the
message flows to accept the dual inputs,
and merge them into a single output
XML stream (see Listing 3).

VisualAge for Java contains connec-
tor technology for accessing MQSeries

V I S U A L A G E R E P O S I T O R Y

Consolidating Legacy Data

WRITTEN BY
BRADY FLOWERS E

very company that’s been around longer than a few months has probably created or purchased many
different systems dedicated to specific areas of the business. For example, let’s say customer files were
set up years ago using off-the-shelf software.The software had hooks for customization, and some fea-
tures were added. Over the years the customer list has grown very large, and the company has become
dependent on this system.You know the word: legacy.

Solving legacy data integration problems
Part 1 of 2

FIGURE 1: Solution architecture

Presentation
Layer Existing

ApplicationsServlet & JSP

Current requirement

Presentation
Layer

Thick Client

Translation
Layer

MQSeries Integrator

Possible future requirement

Synch Synch/
ASynch

Existing
Data

Java COM

48 JANUARY 2001

V I S U A L A G E R E P O S I T O R Y
queues. It also provides XML parsers, which
we’ll need when we add our new business
logic. Since we plan to deploy to WebSphere
Application Server, our job will be made easi-
er by the WebSphere Test Environment and
live debugging engine that are in VisualAge
for Java.

Once we’ve created the MQSeries access
code and business logic in VisualAge for Java,
we can take the Java code into WebSphere Stu-
dio and generate the servlet, HTML, and JSP
files necessary to our Web application. We’ll
also use WebSphere Studio to deploy the appli-
cation onto our WebSphere test server.

This column recently discussed using Visu-
alAge for Java and WebSphere Studio in con-
junction with WebSphere Application Server to
create, test, and deploy end-to-end Web appli-
cation solutions (JDJ, Vol. 5, issues 9 and 10).
Therefore, we won’t focus on that aspect of our
project. Instead, in Part 2 of this article we’ll
look at MQSeries Integrator and some of the
steps for creating data translations and mes-
sage flows. But we’ll be able to give you only a
taste of the facilities provided by MQSI.
For a complete discussion of end-to-end solu-
tions, we urge you to examine the following
resources.

Resources
If you’d like to explore the entire end-to-end

setup of an MQSeries/MQSI environment for
the development and testing of legacy integra-
tion applications consult the following sources:
1. IBM’s Patterns for e-business Web site. The

Patterns for e-business Development Kit
available here is a self-configuring, end-to-
end skeleton Web application. The PDK is a
best practice implementation of the User-to-
Business pattern: www.ibm.com/soft-
ware/developer/web/patterns/.

2. Van de Putte, G., Brett, C., Sehorne, P., and
Stubblebine, S. (2000). Business Integration
Solutions with MQSeries Integrator. IBM Red-
book: ibm.com/redbooks.

3. Sadtler, C., Ahmed, S., Fleifel, G., Jeynes, M.,
and Young, Y. (2000). User-to-Business Pat-
terns Using WebSphere Advanced and MQSI.
IBM Redbook: www.ibm.com/redbooks.

AUTHOR BIO
Brady Flowers is a Software IT Architect with IBM's WebSpeed team

specializing in WebSphere, Java, and the rest of IBM’s suite of
e-business applications.

bradenf@us.ibm.com

#define CUSTNO_LEN 8
#define FNAME_LEN 24
#define LNAME_LEN 24
#define ADDR_LEN 24
#define CITY_LEN 24
#define STATE_LEN 2
#define ZIP_LEN 10

struct C_CUSTOMER {
char custno[CUSTNO_LEN];
char fname[FNAME_LEN];
char lname[LNAME_LEN];
char addr[ADDR_LEN];
char city[CITY_LEN];
char state[STATE_LEN];
char zip[ZIP_LEN];
double balancedue;
int datedue_month;
int datedue_day;
int datedue_year;
}

<xml_customer>
<CustomerNumber>123456768</CustomerNumber>
<NewViewableInfo>...</NewViewableInfo>
<NewPrivateInfo>...</NewPrivateInfo>
</xml_customer>

<customer_view>
<CustomerNumber>123456768</CustomerNumber>
<FirstName>James</FirstName>
<LastName>Morrison</LastName>
<Address>1234 Main St.</Address>
<City>Anytown</City>
<State>US</State>
<PostalCode>12345-6789</PostalCode>
<PersonalInfo>....</PersonalInfo>
</customer_view>

Listing 3

Listing 2

Listing 1

If Voting
for the

President
Were Only
This Easy!

www.javadevelopersjournal.com

Vote For…
Best Java IDE

Best Application Server

Best Java Class Library

Best Java Middleware

Best JavaBean
or Component

Best Database Product

Best Java Installation Tool

Best Java Modeling Tool

Best Book

Best Java Profiling Tool

Best Java Reporting Tool

Best Team
Development Tool

Best Java Testing Tool

Best Java Application

Most Innovative
Java Product

Best XML Product

Best Wireless Java Product

Best Code Protection Tool

New Category Nominations

And More!

JDJ readers will begin the voting process
January 10, 2001, through May 30, 2001.

Winners will be announced at JavaOne 2001
and presented at the International Conference

for Java Technology – Fall Conference

50 JANUARY 2001

Java COM

alexr@fiorano.com

What if you wanted total control
over your data? What if you wanted to
control every aspect of how your data is
formatted, displayed, edited, and up-
dated? The answer to this is knowing
how to use the native Java JTable. Mas-
tering the use of this class is your key to
exercising total control over data within
your applet/application – albeit with a
considerable tradeoff in added com-
plexity.

Over the next few issues I’ll cover the
use of the JTable and help you master
this powerful Java component.

The JTable
Before Data Express there was the

JTable, a Java Swing Component with
the Swing JComponent as its immediate
ancestor. The JTable is used primarily to
provide users with a way to view and
manipulate data in a columnar (or grid)
format. With this functionality, users are
allowed to edit and scroll through many
records of data rather than editing one
record at a time.

Although the JTable can obtain its
data from many sources, it’s most useful
when it holds data retrieved from a data-
base via JDBC. Interestingly, the JTable is
the only native Java control that can be
populated directly from JDBC that
allows the user to manipulate data in a
columnar format. As you might guess,
the JTable is an extremely complex com-
ponent – in my opinion, the most com-
plex in the entire Java language. Since
books can be written on its use, it’s
amazing that the JTable is the most
underdocumented or written about Java

component. Even the best of Java books
barely give it a mention. I hope to help
change all that.

Understanding the Basics
Like most things in Java, matters

appear more difficult than they really are.
So it seems with the JTable. Understand-
ing its functionality first requires under-
standing related classes. As you’ll soon
learn, with all of its robust functionality
the JTable relies on other Java classes to
perform most of the work. Often the rela-
tionship between these related classes is
a source of confusion; understanding it is
key to understanding the JTable. Learn-
ing it can be daunting, but it’s made easi-
er if spoon-fed one piece at a time.

The first class that needs to be
understood is the JTable itself. This class
contains a two-dimensional view of the
data to be displayed. In other words,
when the user is looking at the GUI,
what he or she sees is the JTable class.
Simple uses of the JTable are relatively
easy to set up. However, in complex
applications use of the JTable without
any of its supporting classes is very lim-
ited. For example, if you need to auto-
matically populate the JTable with rows
and columns from a JDBC data source,
the use of a JTable alone will not suffice.

If used alone, the data contained
within a JTable needs to be passed as an
array of objects or as a vector to the
JTable constructor. This may be okay if
you want the JTable to contain static val-
ues. More than likely you’ll want the data
to come from a database. In a nutshell
the JTable contains the visual portion of

the data and generally doesn’t control
where it comes from or how it behaves
(e.g., what happens if it changes). If you
have the data ahead of time and want to
simply display it to the user (without
regard to changes in data) use the simple
JTable constructors listed below:

JTable()
This constructs a “basic” JTable that’s

initialized with a default table model, a
default column model, and a default
selection model (these classes will be
discussed later in this series). This con-
structor is of limited use because the
number of rows and columns haven’t
been specified. Also, the JTable receives
limited functionality because the default
models will be used. Since you haven’t
built custom models (or don’t yet know
how!), don’t expect the default models to
do much. This constructor isn’t used very
often, so I won’t offer a code example.

JTable(int numberofRows,int
numberofColumns)

This constructs a JTable with num-
berofRows and numberofColumns of
empty cells using the default models.
Since no column names can be specified
in the constructor, Java will produce
generic ones in the form “A”, “B”, “C”, “D”,
and so on. Ironically, you can add and
remove columns after the table has been
constructed, but you can’t add or
remove rows. Like the first constructor,
this one doesn’t directly accept data.

The code in Listing 1 illustrates the
use of this constructor. In the listing, the
class constructor builds a JTable (with
three rows and two columns) and adds it

J A V A & J B U I L D E R

Mastering the JTable
Part 1 of 3

Have total control over your data

WRITTEN BY
BOB HENDRY J

Builder Data Express controls enable JBuilder developers to use prebuilt objects to provide the user
with an interface in which to view and manipulate data.For the most part, the use of Data Express com-
ponents simplifies our task of programming data access functionality into our applets/applications. One
drawback of using these components is that you’re restricted to using only functions and changing prop-
erties that are supported by that specific control. In other words, although JBuilder simplifies your task,
you can use only prewritten functionality.

Java COM

52 JANUARY 2001

J A V A & J B U I L D E R
to a JScrollPane. When a JTable is added
to a JScrollPane, the JScrollPane auto-
matically obtains the JTable’s header,
which displays the column names, and
puts it on top of the table. When the user
scrolls down, the table’s header remains
visible at the top of the viewing area.
Next, the program’s main method places
the JScrollPane on a JFrame via a con-
structor call. Finally, the program uses
the setValueAt method to set the value
for a single cell in the JTable. Three
names and ages are added. Here’s the
syntax for setValueAt:

public void setValueAt(object value,

int row, int column)

• Value: The new value to be placed in
the cell

• row: The row in the JTable to be
changed

• column: The column in the JTable to
be changed

Notice that the setValueAt method
doesn’t care what data type the value is. In
the above example I used the same
method to set names (strings) and ages
(integers). You may think that the setVal-
ueAt is an overloaded method. It isn’t. It
takes the value argument as type Object
so the programmer doesn’t have to differ-
entiate between data types. Also rows and
columns start at the number “0”, not “1”.

As noted earlier, data can’t be includ-
ed in the constructor JTable- (rows,
columns). However, this isn’t to prevent
you from crafting creative schemes in
your data-getting endeavors. The previ-
ous example illustrates that the setVal-
ueAt method can be used to set the
value of a single cell within a JTable. So
why can’t the data come from a database
rather than a hard-coded value? Well, it
can. The current constructor doesn’t
support the use of database data but
nothing is preventing you from doing
the legwork yourself.

Consider the program in Listing 2.
This listing is similar to the previous one,
the main difference being that the data
within the setValueAt method comes
from data in a database. The focus of this
series of articles is on the use of JTables
and not necessarily JDBC. However, the
code does warrant a brief explanation.
For the sake of brevity I’ll discuss only the

differences from the first example.
try {

Class.forName("sun.jdbc.odbc.Jdbc

OdbcDriver");

} catch(java.lang.ClassNot-

FoundException e) {

System.err.print("Class-

NotFoundException: ");

System.err.println(e.getMessage());

}

This first block of code loads the
“Level 1” Java database driver. The Level
1 driver is often called the JDBC-ODBC
Bridge and is used to connect to local
databases that support the ODBC inter-
face.

String url = "jdbc:odbc:bradygirls";

Ex1Con=

DriverManager.getConnection(url, "",

"");

Ex1Stmt = Ex1Con.createStatement();

Ex1rs = Ex1Stmt.executeQuery("SELECT

name, age FROM bradygirls ORDER BY

name");

Next, the string containing the URL
is built; jdbc:odbc: is specified because
the JDBC-ODBC bridge is being used.
:bradygirls is the name of the ODBC data
source. Note: For this to work, an ODBC
data source named bradygirls must be
set up on your local machine. This can
be achieved via the control panel on
Windows machines. In my case, I’m
using an MS Access database.

After the database connection has

been established a statement class is cre-
ated, then an executeQuery method is
fired. This method takes a string contain-
ing a valid SQL statement for an argu-
ment. The results of the SQL statement
are read into a ResultSet class. Now we’re
ready to read the contents of the result
set and put the data into our JTable.

int li_row = 0;

while (Ex1rs.next()) {

myTable.setValueAt(Ex1rs.get-

String(1),li_row,0);

myTable.setValueAt(Ex1rs.getNum-

ber(2),li_row,1);

li_row ++;

} // while

The above while block will loop
through the result set one row at a time
and populate the JTable. The methods
used to extract data from the result set
are commonly called the getXXXX()
methods (with the XXXX being the data
type of the column in the result set).

Notice that the first column in a
result set is column “1”. This is a direct
contrast to the first column being “0” in
a JTable. This discrepancy can be con-
fusing for a while, but you’ll get used to
it. Believe me, it’s not the only discrep-
ancy you’ll find in Java!

Although the above example uses a
database to populate the JTable, keep in
mind that it’s provided as a work-around
(instead of using Table Models). Table
Models (discussed later) provide a better
way to automatically populate a JTable
directly from a database. But until you
understand Table Models, this code
example should keep you pretty busy –
especially if you’re new to JDBC. The
results of the above program are dis-
played in Figure 1.

JTable(Object[][],rowscolData,Object[]

columnNames)

Unlike the previous two constructors,
this one is used when the rows, columns,
and headings are known at the time the
JTable is instantiated. Data for the rows
and columns are passed in a two-dimen-
sional array of objects. The column head-
ings are passed as a single array of objects.
(FYI: There’s a similar constructor that
uses vectors in place of objects.) The fol-
lowing code snippet uses arrays of objects
to instantiate and populate a JTable.

Object[] [] data =

{ {"Marsha", new Integer(18)},

{"Jan", new Integer(17)},

{"Cindy", new Integer(16)}

};FIGURE 1: JTable results

‘‘

’’

Like most
things in Java,

matters
appear more
difficult than
they really are

J A V A & J B U I L D E R
String[] colNames = {"First

Name","Age");

JTable myTable = new JTable(data,col-

Names);

All of the simple constructors dis-
cussed here are easy to use. However, as
I mentioned, these constructors also
have a few significant limitations. For
example, they automatically make
every cell (and row) editable. This is
misleading to the user because if you’re
allowed to edit a value, you’re implying
that changes can be saved; and remem-
ber, the JTable isn’t even connected to a
database. Furthermore, all of the sim-
ple constructors treat all data types as
strings. This can be annoying in two
ways. First, when aligning data, strings
are generally left-aligned and numbers
are right-aligned. Since the JTable
treats everything as a string, the ages of
the Brady Girls (Figure 1) appear to be
aligned incorrectly. Second, the JTable
has the ability to use other edit styles
besides the ones that handle only text.
For example, if a value to place into a
cell is Boolean, the JTable has the abili-
ty to display the data in a check box.
After all, a Boolean has only two values,
so a check box seems appropriate.
However, if you use one of the JTable
constructors listed previously, a
Boolean column will be displayed as a
string. Finally, the largest limitation is
that they don’t automatically “link” the
JTable to a database. Although there are
a few limited ways to get around this,
one way is to read database columns
into an array of objects or vectors, then
pass those objects to the JTable con-
structor. A better way is to implement
your own custom table model, which
will be next month’s focus.

Default Behavior
Whatever constructor you use, be

aware of the following default behavior:
• All columns in the JTable begin with

equal widths, and the columns auto-
matically fill the entire width of the
JTable.

• If the container is resized (made larg-
er), all the cells within the JTable
become larger, expanding to fill any
extra space.

• When a cell is selected (usually by
double-clicking on it), the entire row
becomes selected. The cell that was
double-clicked becomes highlighted.

• Users can rearrange columns by drag-
ging or dropping them to the left or to
the right.

• Columns are resizable by dragging the
column header to the left or to the
right. This doesn’t adjust the size of the

JTable itself; the other columns will
automatically resize to fill in unused
space. Columns can be set to a default
size by calling the setPreferredWidth()
method for the column model. More
on column models next month.

Some Fun with JTables
The program in Table 1 contains

additional methods on a JTable that can
be used to modify its appearance.

Coming Up Next Issue
As you can see, the JTable controls

how the data is presented but has little
control over how it’s populated. This job
is the responsibility of the TableModel,
which defines where the data comes
from, what the user is allowed to do with

it, and what happens if it changes. This
model is a Java class you create that
extends the Java class Abstract-
TableModel. This class is fairly complex
and can be a bit puzzling. I’ll cover it in
more detail in the next issue.

Another large piece of the puzzle is
the TableModelListener. Its job is to
execute when any of the data has
changed in the TableModel. A Table-
ModelListener is implemented when-
ever you create a class extending the
Java class TableModelListener, or it can
be implemented in an inner class. Of
course, the functionality provided by
the listener is completely up to you.
Many programmers place code to
update the database within a Table-
ModelListener.

TABLE 1 JTable methods

Java COM

54 JANUARY 2001

bobh@envisionsoft.com

void setAutoResizeMode (int mode)
Sets the table's auto resize mode when the table is resized.

void setCellSelectionEnabled (boolean flag)
Sets whether this table allows both a column selection and a row selection
to exist at the same time.

void setColumnSelectionAllowed (boolean flag)
Sets whether the columns in this model can be selected.

void setColumnSelectionInterval (int index0, int index1)
Selects the columns from index0 to index1 inclusive.

void setGridColor (Color newColor)
Sets the color used to draw grid lines to “color” and redisplays the receiver.

void setIntercellSpacing (Dimension newSpacing)
Sets the width and height between cells to newSpacing and redisplays the receiver.

void setRowHeight (int newHeight)
Sets the height for rows to newRowHeight and invokes tile.

void setRowMargin (int rowMargin)
Sets the amount of empty space between rows.

void setRowSelectionAllowed (boolean flag)
Sets whether the rows in this model can be selected.

void setRowSelectionInterval (int index0, int index1)
Selects the rows from index0 to index1 inclusive.

void setSelectionBackground (Color selectionBackground)
Sets the background color for selected cells.

void setSelectionForeground (Color selectionForeground)
Sets the foreground color for selected cells.

void setSelectionMode (int selectionMode)
Sets the table's selection mode to allow only single selections,
a single contiguous interval, or multiple intervals.

METHODS

AUTHOR BIO
Bob Hendry is a Java

instructor at the Illinois
Institute of Technology. He
is the author of Java as a

First Language.

Java COM

56 JANUARY 2001

J A V A & J B U I L D E R

import javax.swing.*;
import java.awt.*;

public class BradyGirls extends JPanel{
static JTable myTable;

BradyGirls(){
myTable = new JTable(3,2);
JScrollPane myPane = new JScrollPane(myTable,
JScrollPane.VERTICAL_SCROLLBAR_ALWAYS,
JScrollPane.HORIZONTAL_SCROLLBAR_ALWAYS);
add(myPane);
myTable.setPreferredScrollableViewportSize(new Dimen-

sion(500, 70));

}

public static void main(String args[]){
JFrame myFrame = new JFrame("Brady Bunch Girls");
myFrame.getContentPane().add(new BradyGirls());
myFrame.setVisible(true);
myFrame.pack();
myTable.setValueAt("Marsha",0,0);
myTable.setValueAt("Jan",1,0);
myTable.setValueAt("Cindy",2,0);
myTable.setValueAt(new Integer(18),0,1);
myTable.setValueAt(new Integer(17),1,1);
myTable.setValueAt(new Integer(16),2,1);
}

}

import javax.swing.*;
import java.awt.*;
import java.sql.*;

public class BradyGirls extends JPanel{
static Connection Ex1Con;

static Statement Ex1Stmt;
static ResultSet Ex1rs;
static JTable myTable;

BradyGirls(){
myTable = new JTable(3,2);
JScrollPane myPane = new JScrollPane(myTable,
JScrollPane.VERTICAL_SCROLLBAR_ALWAYS,
JScrollPane.HORIZONTAL_SCROLLBAR_ALWAYS);
add(myPane);
myTable.setPreferredScrollableViewportSize(new Dimen-

sion(500, 70));
}

public static void main(String args[]) throws SQLException{
JFrame myFrame = new JFrame("Brady Girls Table");
myFrame.getContentPane().add(new BradyGirls());
myFrame.setVisible(true);
myFrame.pack();

//Initialize and load the JDBC-ODBC driver.
try {

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
} catch(java.lang.ClassNotFoundException e) {

System.err.print("ClassNotFoundException: ");
System.err.println(e.getMessage());

}
String url = "jdbc:odbc:bradygirls";
Ex1Con= DriverManager.getConnection(url, "", "");
Ex1Stmt = Ex1Con.createStatement();
Ex1rs = Ex1Stmt.executeQuery("SELECT name, age FROM brady-

girls ORDER BY name");
int li_row = 0;
while (Ex1rs.next()) {

myTable.setValueAt(Ex1rs.getString(1),li_row,0);
myTable.setValueAt(Ex1rs.getString(2),li_row,1);
li_row ++;

} // while
}

}

Listing 2

Listing 1

Java COM

Agent-Based
Computing

in Java

Agent-Based
Computing

in Java

Extremely large, complex software systems stretch the limits of modern design and imple-

mentation techniques. Agent-based computing is an approach to design and implementation that

facilitates the design and development of sophisticated systems by viewing them as a society of inde-

pendent communicating agents working together to meet the goals of the system. Java programming

language’s rich support for networking, security, and introspection make it well suited to imple-

menting a distributed agent-based computing system.

WRITTEN BY WILLIAM WRIGHT

JANUARY 200158

Java COM

60 JANUARY 2001

This article explores the basics of agent-based computing and exam-
ines an Open Source Java toolkit for building distributed agent societies.

Often one of the most contentious parts of agent-based computing is
agreeing on the definition of an “agent”. In the human world the concept
of an agent is familiar to most people. Travel agents make travel arrange-
ments on behalf of their clients. Real estate agents manage real estate
transactions as representatives of their clients. Human agents generally
possess some specialized expertise and use it as a representative of some
client. Software agents are similar in that they usually contain special-
ized behavior and represent some entity as they carry out their actions.

Most people agree that software agents exhibit some behaviors that
distinguish them from other types of software. In general, software
agents are:
• Autonomous: They’re capable of carrying out actions on their own;

that is, there isn’t necessarily a predictable response for every stimu-
lus, and the agent can take action without an external stimulus.

• Goal-directed: Like their human counterparts, they have skills they
utilize to accomplish their objectives. Each agent in a society of agents
has one or more goals and strategies to achieve them.

• Sociable: They can communicate and negotiate with other agents in
pursuit of their goals, so in a society of cooperating agents, one may be
able to draw on the resources of others to help accomplish its goals. It
can also serve as a resource to others as long as that service is in line
with the agent’s goals.

Agent-based computing is different from object-oriented computing
in several ways. While objects and agents both encapsulate their state,
objects have methods that will be executed if invoked by some other
object. The object can’t decide to offer that service to some objects but
not others or to offer it at some times but not others. An agent can decide
whether carrying out a request is in line with its goals and choose
whether to perform the operation. This is why messages between agents
are usually called something like “requests” rather than “invocation.”

Rather than try to make the case for some particular definition of
agent-based computing, let’s look at some ways it can be put to use.

There are several reasons agent-based computing is particularly suit-
ed to the design and implementation of very large systems. The agent
concept parallels the way many real-world systems are put together.
Businesses, for example, are comprised of departments that act
autonomously but cooperatively in pursuit of their goals. A business
might be modeled in an agent society with agents representing these
departments. The messages between them correspond to communica-
tions between departments. Many physical systems are also composed
of autonomous interacting parts. An accurate simulation of these sys-
tems can be most directly built using agents to represent the physical
components. The messages between agents could represent the forces
acting on those components.

Decomposition into agents also benefits the software development
process. For the same reason that object decomposition reduces the
dependencies between software components, agent decomposition
decreases the dependencies even further. In an agent-based system, all
agents communicate using a common language, and no agent can
directly access any state or invoke any method of another agent. This
decoupling of components and rigorous definition of the communica-
tion language enables the parallel development of agents, decreasing the
chance that a defect in one component will damage another. This is par-
ticularly valuable when the components of a system are designed and
developed by different organizations. Each organization can implement
its business logic in its own way, dealing with the other components only
in terms of the interagent messages.

Highly complex systems also lend themselves to agent-based solu-
tions. Systems that are effectively modeled as agents can be built from
components that are themselves simple but, when combined, exhibit
complex behavior. The development of a complex agent society can be
eased by the gradual increase in the sophistication of the individual
agents. Some agents in the society can perform their tasks in a simplified
manner, while others are fully functional. This allows a complex society

to be built and a preliminary evaluation of the system’s effectiveness
made before all of the components are completed.

Because the agents in a society are autonomously pursuing their own
goals, the exact behavior of the society can’t always be predicted. This
emergent behavior is at the heart of agent-based computing. By working
together, software agents can make a system that’s greater than the sum
of its parts. This unpredictability also makes the task of designing and
developing agents more difficult.

An agent needs a strategy to deal with all possible situations, includ-
ing the failure of a neighboring agent or the unavailability of a resource.
Handling failure is one of the most difficult parts of distributed systems
programming. Agent-based computing doesn’t eliminate this difficulty,
but an agent-based approach can be a structure for handling errors.
We’ll see more about failure handling in the example below.

Software agents are often developed to represent legacy systems that
contain essential business logic. Often called “wrappers”, these agents
make the functions and data of the legacy system available to the society
of agents. This is a powerful mechanism for reuse and one of the reasons
for the popularity of agent-based systems in organizations with legacy
systems that must be modernized but can’t be easily reimplemented.

An Example
As an example of agent-based design, let’s look at how a small part of

a business might be implemented in an agent society. Say a manager
(agent) wants to promote an employee named Alice. In Figure 1, the ovals
represent agents and the arrows represent interagent messages. Several
things have to happen to get Alice her promotion, and several agents
carry them out, each using its own goals, expertise, and relationships:
1. The manager requests a promotion for Alice from the personnel

department agent.
2. The personnel agent requests a raise for Alice from the payroll

department agent. The payroll agent may then have to take several
actions to update tax information or recalculate deductions.
The payroll agent might be a wrapper for a legacy human resources
system.

3. The personnel agent also requests a new office for Alice from the
facilities agent. The facilities agent may also need to take several
actions to satisfy the request. This agent might order new furniture
or schedule painting.

Notice that each agent has its own expertise (algorithm) for satisfying
requests. The manager agent doesn’t need to know how to talk to the pay-
roll or facilities agents – he or she only needs to communicate with the
personnel agent. In fact, the manager agent may not even know that the

FIGURE 1 Alice gets a promotion

Facilities

Payroll

PersonnelManager

Give Alice
a Promotion

Give Alice
a Raise

Give Alice
a Big Office

Actions

Actions

Java COM

62 JANUARY 2001

payroll and facilities agents exist. The scalability and robustness of an
agent-based system comes from this information and behavior hiding.

As I mentioned, software agents also need to be able to handle fail-
ure. In the example in Figure 1, it’s assumed that all requests are satis-
fied. This is a bad assumption. When agents make requests of one anoth-
er, they need feedback on the success or failure of the request so they can
decide whether to take further action. The communications shown in
Figure 1 are really bidirectional communications as shown in Figure 2.

What happens if a request can’t be satisfied? The ability of agents to
negotiate becomes important. In this example, if the facilities agent has
no more available offices, the personnel agent needs to be notified that
the request can’t be fulfilled. This report can be a simple success/failure
message, but if the agents share a richer vocabulary, the negotiation can
be much more efficient. Instead of just saying “No,” the facilities agent
could say, “There are no offices available until January 1.” With this infor-
mation the personnel agent can make a better decision about how to
handle the failure. Notice that the facilities agent contains all the logic
for determining available offices. This calculation is invisible to the per-
sonnel agent, who only knows that the request wasn’t satisfied and any
other information the facilities agent chooses to share.

At this point, the personnel agent needs to use its expertise to solve
the problem. A simple-minded agent could tell the manager agent that

Alice can’t be promoted, but that’s not a good solution. A better agent
might make another request from the facilities agent for a different
resource – a tall cubicle, for example – or request an office as of January
1. Figure 3 depicts this negotiation. The order of the messages is top to
bottom.

Once the negotiations are complete the personnel agent can report
to the manager agent that the promotion was successful using a vocab-
ulary known by the manager agent. Then the manager agent can decide
whether to take further action or accept the results given by the person-
nel agent.

Java Agents
Next let’s look in some detail at a Java toolkit for building agent-based

systems. The Cognitive Agent Architecture (Cougaar) provides mecha-
nisms for building distributed agent systems in Java.

The Cognitive Agent Architecture grew out of a program by the U.S.
Defense Advanced Research Projects Agency (DARPA) called the
Advanced Logistics Project (ALP). While originally focused on logistics,
Cougaar is a general-purpose agent architecture. The software is avail-
able under an Open Source license at www.cougaar.org. Cougaar pro-
vides a 100% Java framework for building and distributing societies of
agents. It also includes a framework for building the agents themselves
and some semantics for the interagent messages.

Cougaar agents communicate with one another by sending direc-
tives, which most commonly take the form of tasks; that is, a request for
another agent to do something. Of course because they’re autonomous,
the agent that receives the task may be unwilling or unable to complete
it and can report its disposition back to the sending agent. The agent that
sent the task can also decide to take back or “rescind” the task. A task can
only be rescinded if the receiving agent hasn’t already completed the
task or can undo what it did.

Cougaar agents are composed of business logic classes called plug-
ins, and their behavior is determined by the plug-in components, which
can respond to and generate directives. Each agent contains a black-
board that’s shared by the plug-ins in that agent. Plug-ins can publish
objects to the blackboard and subscribe to changes in it. Plug-ins can’t
communicate with other plug-ins except through the agent’s black-
board, which isn’t accessible by any other agents or processes. This
enforces the modularity of both the plug-ins and the agents. The behav-
ior of most plug-ins is determined completely by what objects in the
blackboard they subscribe to and publish.

The reason it’s called the Cognitive Agent Architecture is because it
was designed to develop agents that model the human problem-solving
process. Humans carry out several processes when trying to solve a
problem. These include:
• Decompose the problem: Break the problem down into simpler sub

problems and solve those. We saw an example in the personnel agent
that knew that to do a promotion, a raise and a new office were needed.

• Delegate the problem: Assign the problem to someone or something
and let them handle it. The manager agent delegated the details of
Alice’s promotion to the personnel agent.

• Consolidate multiple problems: Sometimes it makes sense to collect
several problems and solve them simultaneously. If the facilities
agent had several office moves, it might be possible to group the
before hiring a moving company.

• Monitor progress: Observe the effects of the solution to the problem
and reevaluate the solution if necessary.

• Gather data: Collect information needed to solve the problem.
• Report: Provide information to others about the solution to the

problem.
• Act: Take action to directly carry out the solution.

Cougaar agents can have plug-ins that carry out these processes:
• Expander plug-ins: Take large tasks and break them into workflows

of subtasks.
• Allocator plug-ins: Assign tasks to other agents or real-world assets.

FIGURE 2 Bidirectional agent communication

Manager

Give Alice
a Promotion

Give Alice
a Raise

Give Alice
a Big Office

OK

OK

OK

Actions

Actions

Personnel

Facilities

Payroll

FIGURE 3 Negotiating with the facilities agent

Give Alice
a Big Office

No Office
Available

Give Alice
a Tall Cubicle

OK

Actions

Personnel Facilities

Java COM

64 JANUARY 2001

• Aggregator plug-ins: Group tasks to be carried out together.
• Assessor plug-ins: Monitor external data sources, like sensors or data

bases, to make sure that earlier decisions are still valid.
• Data plug-ins: Retrieve data from databases, Web sites, or other

sources, for use in decision making.
• User interface plug-ins: Report the agent’s progress to a human user.
• Execution plug-ins: Carry out actions that change the world outside

the agent society, like updating databases, or commanding actuators.

Figure 4 shows how the personnel agent in this example might be
implemented using Cougaar plug-ins. Plug-ins are represented as trape-
zoids. An expander plug-in receives the “Give Alice a promotion” directive
from the manager agent. It decomposes that task into two subtasks: “Give
Alice a raise” and “Give Alice a big office.” An allocator plug-in delegates
the raise subtask to the payroll agent, and another delegates the office
move subtask to the facilities agent. This separation of responsibility
within the agent makes it easier to upgrade or modify the agent’s behav-
ior. Just replace a plug-in with one that implements the new behavior.

Cougaar uses several different Java technologies in its implementa-
tion and library of generic reusable plug-ins. It uses an RMI mechanism
for interagent communication when agents are distributed across a net-
work. Java introspection is used extensively to facilitate the communica-
tion between agents and plug-ins. Many wrapper agents use JDBC to
access legacy databases and provide that data to the agent society.
Cougaar also includes examples of wrapper agents for Web-based data
that access HTML and XML data via HTTP.

If you’re like me, things make more sense when you see some code.
Let’s look at some of the details of the Cougaar software. The basic build-
ing block of a Cougaar agent is the plug-in. In its simplest form a plug-in
needs only to initialize itself and respond to changes in the set of objects
of interest. There are two abstract methods in the plug-in’s base class for
these operations.

protected abstract void setupSubscriptions()

As its name implies, this method is implemented by the plug-in devel-
oper to perform initialization functions, including subscribing to the objects
of interest. It’s called just once when the plug-in is loaded. Plug-in develop-
ers define subscriptions by defining a small object with one method (a
unary predicate) that returns true if the object should be included in the
subscription. See Listing 1 for an example of creating a subscription.

protected abstract void execute()

The Cougaar agent executive calls this plug-in method when one of
the plug-ins’ subscriptions changes. Events that signal a subscription
change include:

• New objects of interest being published
• A change in an object of interest
• The removal of objects of interest

The objects of interest might be published by another plug-in or trans-
mitted from another agent as part of a directive. This is how a Cougaar
agent’s behavior is defined – through the subscriptions and publications
of its plug-ins. The Cougaar infrastructure is also responsible for handling
the transaction associated with the execute method. It ensures that no
plug-in can modify the subscription objects during the execute method of
another plug-in. Listing 1 is a simple example of a Cougaar plug-in.

Agents are social software, so they need to know about other agents.
Other agents appear as objects in the local blackboard, so they can be
accessed through a subscription like any other object. Tasks delegated from
other agents appear in the blackboard, so they can also be elements of a
plug-in’s subscription. Common plug-in actions include taking incoming
tasks and decomposing them into subtasks, collecting tasks to be handled
as a group, or assigning tasks to other agents for further handling.

Applications of Agent Computing
Agent-based computing is applied in many domains. It maps well

into the realm of autonomous robotics. A fleet of autonomous mobile
robots has requirements similar to an agent-based system. The robots
are individually goal-driven but need to communicate with one another.
They behave autonomously, but cooperatively.

Agent-based computing has also been used to model network secu-
rity. Work is underway to represent networks and computers as agents
and simulate attacks by hacker agents. In this case, the agents are not all
cooperative, but they all have goals and behave autonomously.

A marketplace is well represented as an agent society. In this case,
agents can represent buyers and sellers. Some examples of this type of
agent are in use already in some Internet auction sites. The real power of
agent technology will come when suppliers’ and customers’ negotiation
agents are tied into other back office agents and can adapt in real time to
changes in the business environment.

Distributed agent computing is a great match for the Java environ-
ment. As the technologies mature, agent-based computing will be an
important design method for large, complex systems.

Resources for Java Agent Computing
1. www.cougaar.org: Web site for the Cognitive Agent Architecture dis-

cussed in this article. In addition to the core Cougaar software, the site
has documentation and examples.

2. java.stanford.edu: Web site for the Java Agent Template, Lite. JATLite
was developed by the Center for Design Research at Stanford Univer-
sity and is available under the GNU Public License. It provides the
connection and communications facilities necessary to enable mes-
saging between agents but says nothing about the internal structure
of the agent or the semantics of the messages. JATLite uses FTP or
SMTP (e-mail) for interagent communication and has facilities for
other message transport mechanisms to be implemented.

3. www.aglets.org: IBM recently released their Aglet Java mobile agent
software under an Open Source license. An aglet is a mobile agent in
that it can move from one host computer to another as it executes. In
addition to the tools on the Open Source site, a free aglet software
development kit is available from IBM.

4. mole.informatik.uni-stuttgart.de: A group at the University of Stuttgart
has another Java mobile agent system called Mole. The software can be
downloaded from their site. It’s free for noncommercial use.

AUTHOR BIO
William Wright is a division engineer with BBN Technologies (a part of Verizon) in Arlington, Virginia. He has
10 years of experience with real-time systems development and object-oriented programming.

FIGURE 4 A Cougaar personnel agent

Allocator

Allocator

To Facilities

To Payroll

From Manager

Ex
pa

nd
er

Give Alice
a Big Office

Give Alice
a Raise

wwright@bbn.com

Java COM

66 JANUARY 2001

// Cougaar classes are in the ‘alp’ packages

import alp.cluster.IncrementalSubscription;

import alp.util.UnaryPredicate;

import java.util.Enumeration;

public class ExamplePlugIn extends alp.plugin.SimplePlugIn

{

private IncrementalSubscription

allStringsSubscription;

private UnaryPredicate allStringsPredicate =

new UnaryPredicate() {

public boolean execute(Object o) {

return o instanceof String;

}};

/**

* Establish subscription for Strings

**/

public void setupSubscriptions() {

allStringsSubscription =

(IncrementalSubscription)subscribe(

allStringsPredicate);

}

/**

* Handle changes to the subscription

**/

public void execute() {

Enumeration e =

allStringsSubscription.elements();

while(e.hasMoreElements())

{

System.out.println("Got a string: "+

e.nextElement());

}

}

}

Listing 1: A Cougaar Plug-In

Java COM

68 JANUARY 2001

alexr@fiorano.com

NT services can start before any user
logs on the NT machine. After the user
logs on, he or she may pause, stop, or
restart the service using the Service
Control Panel applet. When the user logs
off though, the desktop and all process-
es assigned to the desktop are closed;
however, the existing services will keep
running.

Framework
NT services run under a system

account so it’s not easy to debug them,
therefore it’s not advisable to deploy
the Java server directly as an NT ser-

vice. A thin layer of the NT service that
acts as proxy for the Java server by
starting, interrogating, and shutting it
down can do this. Moreover, interro-
gating the Java server to determine its
current status and shutting it down
involves interprocess communication
(IPC).

Creating an NT service in Java that
communicates with the Java server
through remote method invocation
(RMI) enables the service to easily com-
municate with the Java server. When the
service is started it launches the Java
server before any user logs on to the sys-
tem. The service polls the Java server at

regular intervals for its status and
updates the Service Control Manager
(SCM). Then it shuts down the server
when the computer system shuts down,
or the user can stop the server from the
Service Control Panel applet. During
this process, the service logs both infor-
mational and warning messages to the
NT event log. The architectural frame-
work is shown in Figure 1.

Within the framework I’ll briefly
enumerate the steps required to imple-
ment an NT service. This makes the
architecture more comprehensible. The
steps required to create an NT service,
irrespective of the programming lan-
guage, are:
• Register the service with the SCM
• Initialize the service
• Overload the service callback methods

Step 1: Registering with the SCM.
The services are started and stopped

through the SCM; however, for this to
happen they must be registered with the
SCM.

Step 2: Initializing the service.
During the initialization process, the

service tells the SCM its current state –
stopped or running. It also indicates to
the SCM what kind of service callback
methods it will accept.

Step 3: Handling the service
callback methods.

When the NT service is properly reg-
istered and initialized with the SCM, the

J A V A S E R V E R S

Deploying a Java Server as an NT Service

G
enerally it’s desirable to deploy the Java server in such a manner that it auto-
matically starts when the computer does, and stops when the computer shuts
down.This could be quickly and easily implemented by writing an NT service
that communicates with the Java server.

Starting the server without a logged-in user

WRITTEN BY
NITIN NANDA

FIGURE 1 The framework

SCM
(Service Control

Manager)

Start Start

PollStop

Stop

RMI

Interrogate

NT
Service

Event Viewer

Java Server

Stub Skel

Event Log

70 JANUARY 2001

SCM begins to send messages to the ser-
vice and call its callback methods. These
methods handle shut down, stop, and
more.

Communicating the Service
with Java Server

Now I want to deploy a server called
myServer. Let’s expose an interface, iSer-
vice, that myServer exposes to the NT
service. iService has methods that the

NT service calls to stop or poll myServer.
Any Java server that’s required to be
deployed as an NT service implements
the iService. The class diagram is shown
in Figure 2.

iService Interface
The iService is a remote interface that

has two methods: isRunning and shut-
downServer. isRunning determines the
current state of the Java server, whether
it’s running correctly or has crashed.
shutdownServer prepares the Java server
to shut down. It sets a boolean flag that
tells the Java server to release all
resources and finally shut down. The
interface declaration is given below:

public interface iService

extends java.rmi.Remote

{

boolean isRunning()

throws java.rmi.RemoteException;

void shutdownServer()

throws java.rmi.RemoteException;

}

Sample Java Server
Acting as an RMI server for the NT

service, myServer implements iService
and UnicastRemoteObject. In its con-
structor, the server binds itself as
“myServer”, which the NT service could
look up to get its reference. The related
code is given below:

Naming.rebind("myServer", theServer);

Any Java server deployed as an NT
service implements the iService inter-
face described above and handles ser-
vice polling, start, and stop.

Handling Polling
myServer implements the isRunning

and shutdown methods. isRunning sim-
ply returns true. If the server isn’t run-
ning well, it throws a RemoteException
that the service catches. Based on the
return value or the RemoteException,
the service updates the status of the Java
server in the SCM.

public boolean isRunning()

throws java.rmi.RemoteException

{

return true;

}

Handling Stop
To handle the Stop event, the Java serv-

er maintains a private boolean variable
bShouldShutdown_. In the shutdown
method the Java server updates its value

to true. The code snippet is provided
below:

public void shutdownServer()

throws java.rmi.RemoteException

{

bShouldShutdown_ = true;

}

Handling Shutdown
Within the main function of the Java

server a loop regularly checks for the
bShouldShutdown_ flag. When the
bShouldShutdown_ flags become true,
the server releases any resources being
used and shuts down the server by call-
ing the following code snippet:

while(bShouldShutdown_ == false)

{

Thread.sleep (2000);

}

/* release server resources if any */

Runtime.getRuntime().exit(0);

Java Service
A quick and easy way to create an NT

service in Java is to implement the
com.ms.service interface that comes
with the service.zip package included in
the Microsoft SDK for Java. Let’s call the
service class myService. This service
internally maintains the remote refer-
ence to the Java server it obtained by
looking up the RMI server. After creating
the service in Java, it can be converted to
an executable by using the jntsvc.exe
utility that comes with the MS SDK for
Java. The executable can be deployed as
the service using the myService.exe
/install option. Since this service is writ-
ten in Java, all possible Java features are
available to it.

The service can be implemented by
following these steps:
• Specify the callback methods
• Start the rmiregistry and Java server
• Poll the Java server
• Handle stop

Java Service Constructor
The constructor tells the SCM what

callback functions the service is ready to
accept. In our case we can intercept the
shutdown and stop callback methods.
These methods can be specified to the
SCM by using the following code snippet:

setRunning(ACCEPT_SHUTDOWN |

ACCEPT_STOP);

The next step is to launch the Java
server. Since it implements a remote
interface and is an RMI server, the rmireg-
istry also needs to be spawned as a sepa-
rate process. Spawning the rmiregistry

J A V A S E R V E R S

FIGURE 2 Class diagram

com.ms.service

iService
(from server)

Remote
(from mi)

FIGURE 3 Relevant sequence diagram

Service Control
Manager

: myService : myServer

If myServer is
not running fine,
stop the service

Start Service

launchJavaServer()

*isRunning()

handleStop()

Java COM

Java COM

72 JANUARY 2001

and the Java server as separate processes
within the service is done by calling a pri-
vate method, launchJavaServer. Both
these processes can be started using a
runtime class. The relevant sequence dia-
gram is shown in Figure 3.

prRMIRegistry = Runtime.getRuntime().

exec("rmiregistry");

prJavaServer = Runtime.getRuntime().

exec("java com.jdj.server.myServer");

Polling the Java Server
Polling is required to update the cur-

rent status of the Java server – whether it’s
running or has stopped – in the Service
Control Panel applet. This is accomplished
by polling the Java server at regular inter-
vals and retrieving its status over RMI. The
polling loop determines the status by call-
ing the isRunning method of the iService
interface that the Java server implements.
isRunning is called at regular intervals over
RMI. This is accomplished by calling poll-
JavaServer, a private method, within the
constructor of the service.

The polling mechanism, in the poll-
JavaServer method, retrieves the Java serv-
er reference by calling the lookup method.

String sURL = "rmi://" + "127.0.0.1"

+ ":1099/" + "myServer";

theJavaServer =

(myServer)Naming.lookup(sURL);

The polling loop polls the Java server at
regular intervals to determine its status:

while(bContinuePolling)

{

try

{

boolean bIsRunning =

theJavaServer.isRunning();

if (bIsRunning == false)

{

throw new Exception("Error

occurred while polling Java

Server.");

}

Thread.sleep(45000);

}

}

Shutting Down the Java Server
The Java service gets invoked with

handleShutdown or handleStop callback
functions when the user goes to the Ser-
vice Control applet and clicks the “Shut-
down” or “Stop” button, respectively, for
the service. The handleStop method sets
the bContinuePolling to false so that the
Java service stops polling the Java server,
then shuts it down by calling the remote
method shutdownServer. This is followed
by closing the rmiregistry and Java

processes that were invoked in the con-
structor of the service. The code snippet
of handleStop method is given below:

protected boolean handleStop ()

{

bContinuePolling = false;

try

{

if (theJavaServer != null)

theJavaServer.shutdownServer();

}

prJavaServer.destroy();

prRMIRegistry.destroy();

setStopped();

}

Writing to the Event Log
Informational or error messages from

the service can be written to the event
log. To write informational messages use
System.out.println; to log error messages
use System.err.println. An example of an
error message in the code is:

System.err.println("Unable to

bind to the Java Server:");

An example of outputting an infor-
mational message is:

System.out.println("Started RMI reg-

istry.");

Compilation and Deployment
You can use the source code provid-

ed with this article on the JDJ Web site to
deploy the sample Java server as an NT
service. I’ll briefly touch upon how to
compile and register the service with the
SCM. In the following example, the
source code is present in <source dir>
directory.

Compiling the Server
To compile the server, issue the com-

mand:

<source dir>\javac

com\jdj\server*.java

To generate the stub and skeleton
files, issue the command:

<source dir>\rmic

com.jdj.server.myServer

Compiling the Java Service
Set the classpath so that rmi.zip (can

be downloaded from Microsoft’s site),
services.zip (comes with Microsoft SDK
for Java), and myServer_stub.class are
present in the classpath. Now issue the
following commands:

<source dir>\javac myService.java

<source dir>\ jntsvc /svcmain:mySer-

vice /eventsource:myService mySer-

vice.class

The command jntsvc generates
myService.exe file, which would be
deployed in the SCM in the next step.

Deployment
Since the NT service runs under the

system account, you need to set up the
system classpath and system path. The
system classpath must have rmi.zip
and myServer_stub.class (for remote
invocation of Java server) in the class-
path. Also it must contain the directory
<source dir> in which the Java server is
installed.

The system path should contain the
bin directory of the JDK because the NT
service spawns rmiregistry.exe and
Java.exe programs that are present in
the JDK’s bin directory. Note: Remem-
ber to reboot your computer after set-
ting the system classpath and path.

Conclusion
Deploying a Java server as an NT ser-

vice enables you to start the server with-
out requiring a user to be logged in. The
service runs under a system account. A
thin layer of the service communicates
with the Java server to start it, interro-
gate its status, and stop it.

This article uses Microsoft SDK for
Java to implement the service and
rmi.zip to enable RMI communication
between the NT service and the Java
server. This approach might be com-
patible only with Java servers that run
on JDK 1.1.x. You can directly use the
NT service that’s provided. With a
small modification in the server code
(by implementing iService interface)
your server can be deployed as an NT
service.

If you want to use a non-Microsoft
approach to create an NT service it’s a
somewhat lengthier approach. This
would be created in C/C++ and talk to
the Java server through JNI. The basic
architectural framework described here
would be applicable in the latter
approach too.

Resources
• To download MS SDK for Java:

www.microsoft.com/java/down-
load.htm

• To download rmi.zip: ftp://ftp.
microsoft.com/developr/msdn/unsu
p-ed/rmi.zip

J A V A S E R V E R S

nitin.nanda@mailcity.com

AUTHOR BIO
Nitin Nanda is an

associate project manager
in an R & D center of

Quark, Inc., based in
Chandigarh, India. He’s

responsible for managing
the development of a

three-tiered product
engineered in RMI.

Java COM

74 JANUARY 2001

alexr@fiorano.com

Deploying a Java application, particu-
larly a distributed Java application, is a
complex task, since applications typi-
cally require installing a number of JAR
files and batch files (sometimes to dif-
ferent locations) as well as making
changes in the host’s environment. Most
developers create a custom install pro-
gram to simplify deployment. (Usually
the developer employs a deployment
program builder like InstallAnywhere to
create the program.)

Generating the install program is
time consuming, and it must be tested
and verified before it and its related
application can be shipped to cus-
tomers. This is a particularly slow
process if the install procedure must
work on many platforms (Linux, Mac,
UNIX, Windows, etc.).

The cost and time required to create
and test an install program become sig-
nificant obstacles to the timely delivery of
upgrades and bug fixes. However, minor
upgrades and simple bug fixes for a single
platform can be quickly implemented
with a patch. (Note: Patching other plat-
forms usually requires only minor modifi-
cations to the patch batch file.)

Patches take advantage of a Java fea-
ture called the classpath, a list of loca-
tions where the Java launcher (Java.exe)
searches for Java class files. The launch-
er searches the first location, then the
second, and so on. If a suitable class is
found, the launcher stops searching. If
none is found, a “No Class Found” error
message is generated. When the appli-
cation is deployed, if the developer is
wise enough to consider the possibility

of needing a patch, the first location is
empty, the JAR files are deployed to the
second, third, and so on, locations.
When stand-alone class files for a patch
are placed in the first search location,
they take precedence over the class files
deployed in JAR files in that location
and over stand-alone class files and
class files deployed in JAR files in all fol-
lowing locations, effectively replacing
them.

Classpath Details
The classpath is a string. In UNIX

colons separate search locations. In
Windows semicolons separate them. A
location is either a directory location or
a JAR file (including path) location. One
special piece of terminology for defining
locations: a dot indicates “the directory
where the batch file that calls the
launcher was started.”

A typical classpath in Windows looks
like this:

.;C:\MyClasses;C:\MyOtherClasses\Some

Jar.jar

In other words, search the directory
where the batch file that called the launch-
er was started, then the directory
C:\MyClasses, then the jar file C:\MyOther-
Classes\SomeJar.jar. Note: When searching
locations, the launcher searches for a fully
qualified class file (package plus a dot plus
class name) and uses the package name as
a directory hierarchy.

Given the above classpath, if the
launcher was searching for someRoot-

Package.someSubPackage.ThisClass, it
would search for the file ThisClass.class
in the directory someSubPackage under
someRootPackage:
1. Under the directory where the batch

file was started
2. If it wasn’t there, under the directory

C:\MyClasses
3. If it wasn’t there, in the file C:\My

OtherClasses\SomeJar.jar
4. If it wasn’t there, the “No Class Found”

error is generated

Note: If the launcher finds a candi-
date, the last thing it does is verify that
the file found does indeed contain a
suitable package statement.

Setting the Classpath
There are three ways to set the class-

path. A classpath environment variable
can be defined at system start-up or in
the batch file that calls the Java launcher.
Neither is recommended if multiple Java
applications requiring different class-
paths are installed. The recommended
way to define the classpath is to use the
Java Launcher command line option –cp
in the batch file that starts the launcher.

The –cp option allows the developer
to specify a classpath that’s valid for the
Java launcher until it terminates. Con-
sider this UNIX command line:

java –cp .:A.jar:B.jar com.myPack-

age.MyClass

• The launcher searches in the current
directory (the “.”) for classes.

J A V A T E C H N I Q U E S

Deploying and Removing Patches
for Java Applications

WRITTEN BY
JOHN R. HINES &

CHRIS L.WHITE T
he term deploy describes the process of installing the pieces
of an application to a host and making whatever modifica-
tions are required to the host environment so the applica-
tion runs correctly without further modifications.A patch is
a group of Java class files, one or more documentation files,
and one or more batch files that installs them to modify the
behavior of a deployed program.

A cookbook procedure

76 JANUARY 2001

J A V A T E C H N I Q U E S
• If it doesn’t find the class, it searches

in A.jar.
• If it doesn’t find the class in either the

current directory or in A.jar, it search-
es in B.jar.

A class file in B.jar is effectively erased
by placing another version of the same
class in A.jar, and a class file in either
B.jar or A.jar is effectively erased by plac-
ing another version in the current direc-
tory. A.jar and B.jar can be patched by
placing *.class files in the current direc-
tory. Removing the patch simply requires
removing the *.class files.

Note: If java.exe is started without the
–cp command line and if no classpath
environment variable is specified, only
the default location of the libraries is
searched. (The default location is the lib
directory under the same directory as the
bin directory where java.exe is stored.)

Warning: A classpath variable con-
taining many search paths significantly
increases search time!

An Example
The procedure outlined in this exam-

ple assumes the developer is using Win-
dows NT for a development platform
with a ZIP program installed and is
deploying to a Sun UNIX platform. How-
ever, the general procedure is platform
independent.

Suppose you need to patch the JAR file
SomeJarFile.jar in the directory/home/
myname/someproduct by replacing the
file com.somePackage.MyClass.class with
the file J:\MyClasses\com\some Pack-
age\MyClass.class. Also, suppose the pro-
gram in the JAR file is started by a batch
file in the same directory as the JAR file
using the line:

java –cp SomeJarFile.jar

com.somePackage.SomeClass

A Name
First, assign a meaningful name to

the patch, say patch2000082301. (The
algorithm “patch” + year + month + date
+ patch number guarantees that an
alphabetical listing of patch names is
also a listing from oldest to newest,
which simplifies patch management.)

A Directory
Second, create a directory with the same

name as the patch, say, J:\patch2000082301,
to store the patch and working files associ-
ated with it.

A ZIP File
Third, use a ZIP program to create a

ZIP file with the same name as the
patch, say, patch2000082301.zip.

A Readme File
Fourth, use a text editor to create a

“readme” text file with a meaningful
name, say, readme2000082301.txt. The
file should contain a description of the
patch and a list of the files included in it.
For example:

readme2000082301.txt describes the

patch patch2000082301.

This patch is implemented by unjaring

patch2000082301.zip

into the directory containing the jar

file SomeJarFile.jar

To install this patch, copy

patch2000082301.zip

into the directory containing the jar

file SomeJarFile.jar

and unjar it with the following line:

jar –xvf patch2000082301.zip

To remove this patch, go to the

directory that contains the jar file

SomeJarFile.jar and run

removePatch2000082301.ksh.

This patch consists of three files:

readme2000082301.txt – a description

of the patch

com.somePackage.MyClass.class – the

"fixed" class

removePatch2000082301.ksh – the patch

remover

Add this file to the ZIP file. Don’t add
any location information for this file!

Map a Drive to the Appropriate
Root Directory

Fifth, map a drive, say, K: to
J:\MyClasses. (If the J: drive is a UNIX
drive, use the “ln” command). If map-
ping a new drive to the folder is too dif-
ficult, copy com and its subdirectories to
the root of some drive. Mapping the
drive creates the correct path for the
class files in the ZIP file.

Add the Class File to the ZIP File
Sixth, use the ZIP program to add

K:\com\somePackage\MyClass.class to
the ZIP file. Be sure the ZIP file shows the
location com\somePackage for the file.
(WinZip is one program that does this.)

Add a Remove Batch File
Seventh, using a text editor, write a

batch file with a meaningful name that
removes the class files, say, remove-
Patch2000082301.ksh. The file needs to
contain only the lines:

echo batch file to remove patch

patch2000082301

echo must be in the same directory as

the jar file being patched.

rm com/somePackage/MyClass.class

rm readme08023.dat

rm patch2000082301.zip

Add this file to the ZIP file.
The batch file must not contain any

^M characters at the end of a line or
they’ll be treated as part of the file name
and the RM command will not work cor-
rectly. Since this file is inside a ZIP, the
“transfer binary” FTP option won’t strip
out the ^Ms.

Copy the ZIP File
Eighth, copy the ZIP file to the direc-

tory where the JAR file is deployed.

Modify the Start File
Ninth, using VI or some other editor,

modify the batch file that starts the pro-
gram so it reads:

java –cp .:SomeJarFile.jar

com.somePackage.SomeClass

This change forces the loader to first
search for new class files under the
directory where the JAR file is deployed
before it searches the JAR file. (Hopeful-
ly, this change has already been made.)

Unjar the ZIP File
Tenth, at the command line in the

directory where the JAR file is deployed,
unjar the ZIP file:

jar –xvf patch2000082301.zip

Restart the Program
Last, the program being patched

must be terminated if it’s currently run-
ning. When restarted by the modified
batch file, the new class files should be
loaded so testing and verification can
begin. If testing isn’t successful, you can
remove the patch using the batch file
removePatch2000082301.ksh. If it’s suc-
cessful, you can claim a great victory
and announce that the patch is
deployed.

A Possible Problem
Caution: If a previous patch involv-

ing MyClass.class is already installed,
this procedure will destroy the old patch
class file. To avoid this possibility,
rename the old MyClass.class file some-
thing like MyClass.class.oldpatch before
you unzip the new patch file. (Saving
this file is a good idea; you may find that
the new patch doesn’t work correctly, so
you’ll want the old file available.)

chris.l.white@wcom.com

jrhines@softwareconsultingengineer.com

AUTHOR BIOS
John R. Hines, P.E., is

president of Software
Consulting Engineer, Inc., in
Dallas,Texas. He develops

distributed Java
applications during the
day and teaches Java

programming at Richland
College at night. He’s an

enterprise architecture
consultant for a

large-scale project using
Java and CORBA at

MCI WorldCom.

Chris White is a software
development manager for

MCI WorldCom. He has
delivered several

large-scale projects using
Java, CORBA, and XML

technology over the
past 10 years.

Java COM

Java COM

78 JANUARY 2001

Sometimes it’s worthwhile to go back and visit your former pro-

jects. It certainly was for me – using presentation as a commodity to be

deployed according to network configuration is the concept that resulted

from my visit.

The original assignment was to reduce the operating costs of a large
banking agency network. How could this be achieved with a network of

23,000 personal computers scattered over
2,000 sites connected by a frame relay with a
guaranteed bandwidth of 32Kb? We selected an
intranet solution that radically reduced PC
client/server applications to a single local pro-
gram, the browser. To reduce bandwidth needs
we deployed one Web server per site to per-
form only three tasks – handle presentation,
maintain reference data, and invoke central
system applications. This intranet design
saved money by reducing the number of
machines to operate from 23,000 to 2,000 by
allowing them to be operated with a browser.

We can implement this concept to reduce the
load of central farms with Java and J2EE because
a fast local loop isn’t always available. My goal,
however, is to show specifically how we can do it
better. The aforementioned approach didn’t sup-
port a Web server’s update on the fly and we had
to contend with the central system’s synchro-
nization. The solution I present here addresses
these issues by allowing Web servers to download
their presentations the way browsers download
applets. Figure 1 illustrates a possible organiza-
tion. Let’s summarize what we would need:
1. Inexpensive Java servers able to host JSPs

and servlets
2. An API allowing them to invoke central

system applications
3. A simple way to download a presumably

large number of Java servers from any
number of central repositories

The first two requirements can be fulfilled
with off-the-shelf products, and the local Java
server has to address only the following three
requirements:
• Generate presentation
• Invoke central applications
• Maintain reference data

At least two Open Source products meet these
needs: Tomcat (http://jakarta.apache.org/down-
loads/binindex.html) and Resin (www.caucho.
com/download/index.xtp).

EJBs, Remote Method Invocation (RMI), or
Java Message Service (JMS) can be used as the
API to connect to central systems.

The last point, presentation downloading,
implies development. This requires more
explanation and thought and is the core of the
article. Presentation downloading relies on a
Java class loader and leverages on JSPs and

servlets specifications, which I’ll present first.

Standard
The Java Servlet Specification v2.2 defines a Web application as a col-

lection of HTML pages, servlets, and classes that exists as a structured
hierarchy of directories. The root of this hierarchy is the document root
that serves files such as images or HTML. If your Java server waits for
HTTP requests on www.iamakishirofan.com and you defined your Web
application as gunnm, your users will be able to invoke zalem.html, stored
at the root with the URL www.iamakishirofan.com/gunnm/zalem.html.

A WEB-INF directory contains a web.xml file that describes, among
miscellaneous things, servlet and JSP definitions, initialization parame-
ters, mapping to URL, and security constraints. It can also contain a

SUPPORTING WEB
APPLICATIONS WITHOUT

RESTRICTIONS

SUPPORTING WEB
APPLICATIONS WITHOUT

RESTRICTIONS

Part 1 of 3

WRITTEN BY ALEXIS GRANDEMANGE

F E A T U R E

Java COM

80 JANUARY 2001

classes subdirectory in which classes, servlets, taglibs, JSP invoked
beans, compiled JSP, and more are stored. A Web application should be
packaged in a .war file – the JAR archive of the hierarchy.

This packaging is convenient as it gathers all related components in
a single delivery. It has another important property: all servlets and JSPs
of a .war are served the same ServletContext, which is different from the
ServletContext of other packages. Servlets and JSPs can use this Servlet-
Context to access .war data, such as resources and initialization para-
meters, or to store and retrieve application-wide attributes.

The servlet container loads and instantiates servlets. It initializes them
before their first use by calling their init() method with an object that
implements the ServletConfig interface. This provides access to servlet-
specific data. When it decides to unload a servlet, the container invokes
the servlet destroy() method and unreferences it. Each time the container
has to route a request to a servlet, it invokes the servlet’s service() method.

A compiled JSP is a servlet, even if it doesn’t extend HttpServlet or Gener-
icServlet as a normal servlet but as another class that’s application server
dependent. In the case of Resin, it’s com.caucho.jsp.JavaPage and with Tom-
cat, org.apache.jasper.runtime.HttpJspBase. As you can see, compiled JSPs
are no longer portable even if there are only minor differences. The specifi-
cation requires a JSP to implement a standard HttpJspPage interface. A JSP
indirectly handles container requests as depicted in Figure 2.

A compiled JSP implements a _jspService() method and, optionally, a
jspInit() and a jspDestroy() method. The specification implies that, for
instance, when the container invokes Servlet.init(), jspInit() is invoked some-

where in the implementation of the JSP base class. I’ve provided the Tomcat
implementation in Listing 1. All Java servers I tested have similar code.

Choices
Back to our requirement – the solution I want to implement involves
four participant types:

• Browsers: Submit HTTP requests
• Java servers: Process presentation and download the JSPs and servlets

from a repository
• Repositories: Must be accessed with a URL. A suitable repositories list

includes HTTP servers as depicted in Figure 3 and FTP servers
• Java application servers: Process EJB requests

I need to implement a piece of code in the Java server that’s able to seam-
lessly retrieve JSPs and servlets from a central point, cache them, and support
remote update. The solution depicted in Figure 3 is just common sense: I
define a special servlet, JSPservlet, and package it in a .war file to handle all
requests targeting its Web application. This servlet is responsible for loading
target JSPs and servlets and forwarding them requests. To minimize data trans-
fers, I handle archives (.jar) files only and cache downloaded archives, not only
in memory but also on disk to survive a scheduled shutdown or a crash.

To simplify the development I don’t handle JSP compilation. It doesn’t
mean the solution doesn’t support JSPs, only that they have to be precom-
piled, not a real drawback. Compiling JSPs is the only safe way to ensure a
JSP can compile, and I prefer to avoid downloading failing code. I also
don’t support single thread servlets that guarantee only one thread at a
time will execute through a given servlet instance’s service() method. The
support of this feature would require instantiating a new target servlet
when already created target servlets are processing a request. It would add
complexity to the logic and have an adverse impact on scalability.

Application
Server
-EJB
HTTP server
-static pages

Java Server
-servlets
-JSP
HTTP proxy

Browser

LAN

RMI/IIOP

RDBMS

Java Server
-servlets
-JSP
HTTP proxy

Router

Router

Internet

FIGURE 1 Topology

Application
Server
-EJB
HTTP server
-static pages

Java Server
-servlets
-JSP
HTTP proxy

Browser

LAN

RMI/IIOP

RDBMS

Java Server
-servlets
-JSP
HTTP proxy

Router

Router

Internet

FIGURE 2 JSP contract

_jspService

jspDestroy

jsplnit

Request
service()

Response
Destroy

event
destroy()

Init event
init()

JSPContainer

FIGURE 3 Solution

1. Try retrieving from memory
2. Try retrieving from cache

3. Retrieve from repository

4. Store in cache

5. Define and resolve class

cache
.jar

HTTP
Server

Java
Application

Server

Java
Server

HTTP

HTTP
Browser

EJB
Client

Service()

RMI/IIOP

JSPservlet
service()

loadClass

FIGURE 4 Class diagram

HttpServlet

Servlet

Servlet/JSP

service()

Classloader
(from java.lang)

HashMap
(from java.util)

JSPservlet

<<static>> getHandler
service()

contextPath
JSPhandler

get ()

jarName

JSPloader

loadClass()

ClassEntry

get ()

classPath

Java COM

82 JANUARY 2001

Listing 2 shows the deployment descriptor (web.xml) of the JSPservlet
application and how to define that a JSPservlet must handle all requests tar-
geting the application. You specify in <servlet-mapping> <url-pat-
tern>/</url-pattern>, not <url-pattern>*</url-pattern> as you’d expect.
Note that I use <init-param> to set every machine-dependent parameter.
Deployers can then modify them to accommodate different installation and
operating system requirements. cachePath is the directory in which down-
loaded JARs are locally stored, and remoteLocations indicates a property file
in which remote locations are defined. For instance, if a JAR file named
myjar must be downloaded from an HTTP server www.mysite.com, remote-
Locations will contain an entry myjar=HTTP://www.iamakishirofan.com.

Implementation
Let’s look at the class diagram in Figure 4. You see the aforemen-

tioned JSPservlet that relies on a JSPhandlers HashMap of JSPhandler.

There’s a JSPhandler instance per application that reads parameters and
maintains ClassEntry objects, one per archive. ClassEntry maintains a
target servlets cache and a JSPloader instance.

JSPloader is the class loader itself and maintains a class cache. It’s
also responsible for saving locally downloaded archives.

We can now see how the solution works. The Java server calls JSPservlet
service(). To know which servlet is requested, JSPservlet.service() uses the
request object. It first finds the appropriate JSPhandler with getHandler(),
passing the application name it retrieves using the request getCon-
textPath(). Then it gets a reference on the target with JSPhandler.get(),
passing the path to the target returned by the request getPathInfo(). Even-
tually it uses this reference to invoke the target object service() method. As
you can see in Listing 3 that’s all for JSPservlet.

Listing 4 shows the implementation of JSPhandler. Its constructor
retrieves parameter values from web.xml using ServletConfig. getInitPara-
meter() and restores remote location properties from their persisted state.

I chose to use the first part of the path as the archive name
and the remaining part as the class name. Given the URL
www.iamakishirofan.com/gunnm/ gally/nano/machine,
if the application server is configured with the JSPservlet
application on gunnm, ContextPath will be gunnm, the
archive will be gally, and the servlet path in the archive,
nano/ machine.class. This may seem a bit rough compared
to the Web application flexible mapping but it’s simpler to
administer and implement. So JSPhandler.get() parses the
pathInfo string and uses the archive part to find the corre-
sponding ClassEntry in classEntries HashMap. It creates a
ClassEntry if the search fails and invokes its get() method.

Now we can look at the ClassEntry implementation
in Listing 5. Its constructor creates a JSPloader. Its get()
method first tries to get the target servlet from its
instance cache, servletObjects. No matter how many
times a servlet is invoked, a single object is used and
reused. If the object doesn’t exist yet, it uses JSPloader to
retrieve its class, invokes Class.newInstance() to instanti-
ate it, and Servlet.init() to initialize it. It’s extremely close
to the Java server’s implementations.

Class Loader
Before diving into the last and most complicated

piece of code, JSPloader in Listing 6, let’s recap what a class
loader is and what our class loader is supposed to do. A
class loader is an object responsible for loading classes.
Given the class name, it can generate or load its binary
code. It inherits from ClassLoader, which provides meth-
ods you can override (loadClass is the most flexible
method). ClassLoader also implements a service method,
defineClass, that converts the binary code in the Java class
and resolveClass that links it. JSPloader must load classes
from JAR files located either in the cachePath or at a URL.

Back to our example: it retrieves the archive from the
local cache in cachePath/gally.jar or downloads it from a URL,
which is the value of a gally property persisted in remoteLoca-
tions. In addition, when JSPloader downloads an archive, it
must save this archive in its local cache, cachePath/gally.jar.

I prefer loading classes in a JSPloader constructor to
minimize disk and network access duration and numbers.
Another advantage is that forced loading can be performed
outside peak hours by an administration JSP. JSPloader will
then deliver a better response time as classes are already in
memory. I found the memory use – same order of magni-
tude as the size of a downloaded archive – wasn’t a show-
stopper. Note that I link a class only when requested, and
ClassEntry instantiates objects only once, when they’re first
requested.

The JSPloader constructor tries downloading the

Java COM

84 JANUARY 2001

archive from the local cache with loadClassDataFS() and then from its
remote location with loadClassDataURL(). Both methods build a JarIn-
putStream from an input stream that loadClassDataFS() gets from a
FileInputStream and loadClassDataURL gets from a URL.openStream().
Since the JarInputStream handling is the same, I implemented it in a
parseStream method.

parseStream loops around JarInputStream.getNextJarEntry(), which
reads the next JAR file entry and positions the stream at the beginning of
the data. Once parseStream has a JAR entry, it gets its name with JarEn-
try.getName() and uses a BufferedInputStream to read it. Then it con-
verts it to a class with ClassLoader.defineClass and stores it in a classes
memory cache. When it has to locally store a remotely downloaded
archive, it uses a JarOutputStream; each time it’s read an entry it rewrites
it using JarOutputStream. putNextEntry() and JarOutputStream.write().

loadClass is invoked with two arguments, the name of the class and a
boolean, resolve, that indicates if the class must be linked. Here I use the
passive mode on purpose. Who invokes loadClass()? It depends. When
ClassEntry invokes loadClass with the class name only, no magic hap-
pens. ClassLoader implements a loadClass(name) method that invokes
loadClass(name, false). But the loaded class is associated with a JSPloader
instance, which becomes the current class loader. If the loaded class uses
another class, the Java Virtual Machine (JVM) will invoke JSPloader.load-
Class to load it. This is why JSPloader.loadClass delegates class loading for
the classes it doesn’t find in its classes cache to the system class loader
and its parent through the loadForward method.

The JSPloader.loadClass also delegates in two other interesting cases. If
the class name starts with “java.”, ClassLoader refuses to create it for secu-
rity reasons. So I don’t even try. The other case is “javax.servlet.Servlet”.
ClassEntry casts the target object it creates in a servlet. As I said, every
class is associated with a class loader instance. In fact the JVM maintains
the uniqueness of class_name, class_loader_object and not of class_name
alone. So a cast of an object of class A loaded by class_loader_object1 to
the same class loaded by class_loader_object2 fails. Therefore I check
javax.servlet.Servlet and don’t risk loading it from the archive.

Considerations
The order of the search has an obvious security impact. I prefer try-

ing the class’s memory cache first for speed and flexibility: I really
depend on the Java server JDK for Java. I can download anything else,

including the EJB, JMS, or RMI library code, but it has a security impact.
If you don’t trust your remote location, it’s safer searching locally first.

My code is reasonably close to JDK 1.1 code: just replace HashMap with
Hashtable and JarInputStream with ZipInputStream to run it with JDK 1.1.
If local caching and JDK 1.1 have no value for you, consider URLClass-
Loader as an alternative to JSPloader. However, it’s not really optimized for
server-side use and you’d probably prefer the compatible NetworkClass-
Loader of Harish Prabandham provided in Tomcat. Its design is similar to
JSPloader but instead of caching defined classes, it caches class data.

In Part 2 I’ll describe how to handle images, support Web applications
without restriction, and require updates from a browser. In Part 3 I’ll demon-
strate how to host downloaded classes in a sandbox, such as applets.

Conclusion
Through the class loader comprehensive mechanism it’s easy to write

a tool that’s able to download servlets and JSPs from a remote location. It’s
even relatively easy to make it portable, though Java servers are probably
the most hostile environment since they use class loaders intensively.

The idea probably has value for corporate intranets and B2Bs.
Assume company B wants to provide access to its Web application to
company A, which maintains a Java server. It simply configures its serv-
er to automatically download the code from B to enjoy reduced com-
munication bills and better response time. It’s a win-win situation since
B doesn’t have to process presentation. Now suppose A has many part-
ners. As each downloaded archive is processed by a different class
loader instance, it can use the same class names without collision. If A
uses a different Web application for each partner, the partners won’t
share the same context. And A partners don’t even have to know about
A’s Java server host and operating system. However, its real potential
may be elsewhere.

If we could define a standard describing how to require a download and
from where – for instance with XML over HTTP – even ISPs could host pages.
Presentation would become a commodity like routing or a name service.

AUTHOR BIO
Alexis Grandemange is an architect and system designer. A Java programmer since 1996 with a background
in C++ and COM, his main interest is J2EE with a focus on design, optimization, and performance issues.

agrandemange@amadeus.net

public final void init(ServletConfig config)
throws ServletException {
this.config = config;
jspInit();

}
public final void destroy() {

jspDestroy();
}
public final void service(

HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {
_jspService(request, response);

}

<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, -
Inc.//DTD Web Application 1.2//EN"
"http://java.sun.com/j2ee/dtds/web-app_2_2.dtd">

<web-app>
<servlet>

<servlet-name>JDJloader</servlet-name>
<servlet-class>JDJloader.JSPservlet
</servlet-class>
<init-param>

<param-name>cachePath</param-name>
<param-value>C:/temp</param-value>
<description>local cache</description>

</init-param>
<init-param>

<param-name>remoteLocations</param-name>
<param-value>C:/temp/jdj.properties</param-value>
<description>jar remote location</description>

</init-param>
</servlet>
<servlet-mapping>

<servlet-name>JDJloader</servlet-name>
<url-pattern>/</url-pattern>

</servlet-mapping>
</web-app>

public class JSPservlet extends HttpServlet {
public static HashMap JSPhandlers = null;
public static final synchronized JSPhandler

getHandler(ServletConfig sc,
String contextPath) throws ServletException {
JSPhandler jh = null;
if (JSPhandlers == null)

JSPhandlers = new HashMap();
else

jh = (JSPhandler)JSPhandlers.get(
contextPath);

if (jh != null)
return jh;

jh = new JSPhandler(sc, contextPath);
JSPhandlers.put(contextPath, jh);
return jh;

}
public void service(HttpServletRequest request,

HttpServletResponse response)
throws ServletException, IOException {
JSPhandler jh = getHandler(getServletConfig(),

request.getContextPath());
Servlet srv = jh.get(request.getPathInfo());
srv.service(request, response);

}
}

public class JSPhandler {
String cachePath;
HashMap classEntries = new HashMap();
Properties remoteLocProp = new Properties();
ServletConfig servletConfig;

Listing 4: JSPhandler code

Listing 3: JSPservlet code

Listing 2: JSPservlet web.xml

Listing 1: Apache implementation of _jspService and jspInit

Java COM

86 JANUARY 2001

JSPhandler(ServletConfig sc,String contextPath){
servletConfig = sc;
cachePath = sc.getInitParameter("cachePath");
if (cachePath == null)

cachePath = "C:/temp";
String remoteLocFile = sc.getInitParameter(

"remoteLocations");
if (remoteLocFile == null)

remoteLocFile = cachePath + contextPath +
".properties";

File f = new File(remoteLocFile);
if ((f != null) && f.exists()) {

try {
remoteLocProp.load(new DataInputStream(

new FileInputStream(f)));
}
catch(Exception e) {}

}
}
final synchronized Servlet get(String pathInfo)

throws ServletException {
String fullName = pathInfo;
if (pathInfo.startsWith("/"))

fullName = pathInfo.substring(1);
int idx = fullName.indexOf('/');
String jarName = fullName.substring(0, idx);
String classPath = fullName.substring(idx + 1);
ClassEntry ce = null;
if (classEntries.containsKey(jarName)) {

ce = (ClassEntry)classEntries.get(jarName);
return ce.get(classPath);

}
ce = new ClassEntry(this, jarName);
classEntries.put(jarName, ce);
return ce.get(classPath);

}
}

class ClassEntry {
JSPhandler handler;
JSPloader jl;
HashMap servletObjects;
ClassEntry(JSPhandler jh, String jarName)

throws ServletException {
handler = jh;
String jarURL = (String)

jh.remoteLocProp.get(jarName);
jl = new JSPloader(jh, jarName, jarURL);
servletObjects = new HashMap();

}
final Servlet get(String classPath)

throws ServletException {
if (servletObjects.containsKey(classPath))

return (Servlet)
servletObjects.get(classPath);

Servlet srv = null;
try {

Class jspClass = jl.loadClass(
classPath.replace('/', '.'));

srv = (Servlet)jspClass.newInstance();
srv.init(handler.servletConfig);
servletObjects.put(classPath, srv);

}
catch(Exception e) {

throw new ServletException("ClassEntry.get("
+ classPath + ") " + e);

}
return srv;

}
}

public class JSPloader extends ClassLoader {
JSPhandler handler;
String jarURL;
String jarName;
HashMap classes = null;
ClassLoader parent;
public JSPloader(JSPhandler jh, String jarName,

String jarURL)
throws javax.servlet.ServletException {
super();
handler = jh;
this.jarURL = jarURL;
this.jarName = jarName;
parent = getParent();
if (!loadClassDataFS()) {

if (!loadClassDataURL())
throw new javax.servlet.ServletException(
"JSPloader.JSPloader unable to load jar");

}
}
private final boolean parseStream(

JarInputStream jis, boolean toSave) {
JarEntry je = null;
boolean rc = true;
try {

JarOutputStream jos = null;
if (toSave)

jos = new JarOutputStream(

new BufferedOutputStream(
new FileOutputStream(handler.cachePath +
"/" + jarName + ".jar")));

while((je = jis.getNextJarEntry()) != null){
String entryName = je.getName();
if (entryName.endsWith(".class")) {

if (toSave)
jos.putNextEntry((JarEntry)je.clone());
ByteArrayOutputStream baos =

new ByteArrayOutputStream();
BufferedInputStream bis =

new BufferedInputStream(jis);
int i;
while((i = bis.read()) != -1)

baos.write(i);
if (classes == null)

classes = new HashMap(100);
byte[] buf = baos.toByteArray();
String k = entryName.substring(0,

entryName.lastIndexOf('.')).replace('/', '.');
Class jarCl = defineClass(k, buf, 0,

buf.length);
classes.put(k, jarCl);
if (toSave)

jos.write(buf, 0, buf.length);
}
jis.closeEntry();

}
jis.close();
if (toSave) {

jos.closeEntry();
jos.close();

}
}
catch(Exception e) {

rc = false;
}
return rc;

}
private final boolean loadClassDataFS() {

String jarPath = handler.cachePath + "/" +
jarName + ".jar";

JarInputStream jis = null;
try {

jis = new JarInputStream(
new FileInputStream(jarPath));

}
catch(Exception e) {

return false;
}
return parseStream(jis, false);

}
private final boolean loadClassDataURL() {

JarInputStream jis = null;
try {

URL url = new URL(jarURL + "/" + jarName
+ ".jar");

InputStream is =
url.openConnection().getInputStream();

jis = new JarInputStream(is);
}
catch(Exception e) {

return false;
}
return parseStream(jis, true);

}
private final Class loadForward(String name)

throws ClassNotFoundException{
try {

return findSystemClass(name);
}
catch(ClassNotFoundException cnfe) {}

try {
return parent.loadClass(name);

}
catch(ClassNotFoundException cnfe) {

throw cnfe;
}
catch(Exception e2) {

throw new ClassNotFoundException(
e2.toString());

}
}
public synchronized Class loadClass(String name,

boolean resolve)
throws ClassNotFoundException {
if (name.equals("javax.servlet.Servlet") ||

name.startsWith("java."))
return loadForward(name);

if ((classes != null) &&
(classes.containsKey(name))) {
Class cl = (Class)classes.get(name);
if (resolve)

resolveClass(cl);
return cl;

}
return loadForward(name);

}
}

Listing 6: JSPloader code

Listing 5: ClassEntry code

Java COM

88 JANUARY 2001

alexr@fiorano.com

From a technical perspective, making
the transition to n-tier architecture
requires risk management of such issues
as network latency, system responsive-
ness, service availability, load manage-
ment, distributed caching, distributed
garbage collection, and system manage-
ment. Furthermore, for every novel
solution to optimize system efficiency,
more issues are created that must be
addressed. Despite this gloomy outlook,
the technical risks in building distrib-
uted OO components for large-scale
enterprise systems can be managed by
using fundamental design techniques.

For instance, by carefully analyzing
the problem domain requirements,
early design decisions can help mini-
mize network traffic, thus improving
overall system responsiveness.

This article outlines a common
approach at the Interface Definition
Language (IDL) level using an iterator
pattern to govern the amount of data
passing over the wire. Several issues are
also addressed such as caching and dis-
tributed garbage collection, both of
which can be solved using JDK features.

Performance Issues
Although CORBA abstraction helps

shield underlying network infrastruc-
ture complexity, it doesn’t guarantee the
construction of a reliable high-perfor-
mance system. To achieve some goals,
the overall system architecture design

must consider the underlying network
infrastructure. According to the authors
of Enterprise CORBA, three factors affect
CORBA-based system performance:
1. Number of remote invocations
2. Amount of data transferred
3. Marshaling costs of different data

types

Fortunately these issues can be miti-
gated if they’re anticipated early in the
design cycle. Observations indicate that
a processing delay occurs when sending
data over the wire. If a system design
seeks to minimize network traffic caused
by interactions among distributed
components, the system performance
improves accordingly. In CORBA-based
systems the IDL plays an important role
in component interactions as it defines
interfaces in which servants comply.
Hence, the logical place for applying
design techniques is in the IDL design.

IDL Design
A common IDL design issue that’s

frequently overlooked is determining
which interfaces are candidates for ser-
vants, and transient and persistent
CORBA objects.
• A servant is a programming-lan-

guage–dependent object that imple-
ments an object’s operations (CORBA
2.4 specs). In the CORBA program-
ming model servants are registered
with the Portable Object Adapter

(POA), which arbitrates the lifetime of
the servants for the requests.

• In contrast to servants, transient
CORBA objects aren’t registered with
the POA and are usually created by
the servant during request process-
ing. These transient objects don’t live
beyond the life of a process or (some-
times) the thread that created it. Their
object references aren’t published.

• Persistent CORBA objects associate
with a persistent state and have spe-
cial uses.

This article focuses on using tran-
sient CORBA objects to manage large
data transfers. These data-throttling
techniques are desirable when the
potential exists for discarding data. For
example, the user specifies a query that
returns a large result. After viewing the
first 20 items, another query is made
that results in discarding the remaining
data. In a single-process application
such usage isn’t a problem, but in dis-
tributed computing it wastes network
bandwidth and CPU processing time.

For the basis of discussion, Figure 1
provides a reference of a trivial interaction
between a client and a server. The client
proxy is a remote proxy class that manages
the connection and delegates client appli-
cation requests to a remote invocation. As
indicated, the client makes a remote
request to a servant that services the
request and returns an array or sequence
of product objects. If the result contains n

C O R B A C O R N E R

Performance Management
Starts with IDL Design

An early focus on IDL design is key in the CORBA environment

WRITTEN BY
KHANH CHAU A

t the enterprise level, building and deploying distributed object-oriented compo-
nents involves a dizzying number of choices and considerations. In contrast to a sin-
gle-process monolithic system, distributed computing provides the flexibility to
delegate computing processing power to a large number of nodes, allowing us to
build highly complex systems. Coupled with this flexibility are issues that arise from
a system’s distributed nature.

90 JANUARY 2001

product objects, n elements are mar-
shaled and sent back over the wire. At first
glance this approach is acceptable unless
the requirement is to remedy undesirables
as previously outlined.

The following code shows an IDL
snippet that defines the interaction. The
IDL content is straightforward, as the
interface contains only one operation.

This operation defines the criteria used to
return an array of products. We’ll return to
the IDL shortly after more discussion of
the client-side implementation.

module productcatalog

{

struct ProductItem{

string productName;

…

};

typedef sequence<ProductItem> Product

ItemList;

interface ProductCatalog {

ProductItemList getProductItems(in

string group,

in string category, in string sta-

tus)

raises (SomeRemoteExcep-

tion);

};

};

Assume a remote service is function-
al. From the client perspective, making a
request to retrieve product information
involves a few steps (see Figure 2). The
proxy object provides a wrapper that
binds to a specific remote object
instance and acts as an intermediary for
managing remote invocation. Its respon-
sibilities include:
• Preparing the request
• Delegating the request invocation to

the stub
• Trapping remote exceptions (and

preferably mapping them to mean-
ingful user-defined exceptions)

• Preparing the received data structure
for an object model that can be readi-
ly used by the client application

In the Product Catalog Proxy imple-
mentation (see Listing 1), the client
proxy is implemented using a singleton
pattern. This ensures that only one
instance of the client proxy is created.
For each request that requires remote
invocation, the locateRemoteService()
method is called to verify the remote
object reference. If the connection is
dropped or the object reference is no
longer valid, the binding automatically
occurs, enabling more resilience to fail-
ures. The implementation of locateRe-
moteService() isn’t shown, as the pro-
gramming model depends on the object
location mechanism or is specific to an
ORB product.

Now consider a slightly different IDL
design that returns a list of product IDs
instead of products (see Figure 3). The
difference, in terms of network over-
head, is that the ID sequence is much
smaller in size than a products list. The
assumption is that the UI can present
the user with a list of product IDs, and
the user selects one to return a complete
product. This approach is an improve-
ment over the previous one – data isn’t
wasted because information is transmit-
ted according to user needs.

One shortcoming of the previous
design is determining whether it’s
acceptable to display product IDs. Keep

C O R B A C O R N E R

FIGURE 1 Scenario A – Return all products per request invocation

Client
Application Remote

Service

Client
Proxy

Product getProducts(…)

FIGURE 2 Standard procedure for handling requests

Client Application

CORBA
Remote Service

Product Catalog
Servant

Client Proxy

Sequence of product items

ORB

Invoke
request

Prepare
data for use

Handle
exception

Use data

Throw exceptionOk?
N

Y

Stub

FIGURE 3 Scenario B – Return ID list, then invoke separate requests to get object using ID

Client
Application Remote

Service

Client
Proxy

ProductID getProducts(…)

Product getProduct(id)

Java COM

92 JANUARY 2001

in mind that retrieving every product
by enumerating over the product IDs
array results in the same problem pre-
viously shown, except it’s more severe
because now there’s n+1 remote invo-
cations.

The next solution (see Figure 4) is to
redesign the IDL to take advantage of
user behavior and computing con-
straints. The design change is based on
the following observations.

For most UI applications, such as
Swing applications (thick GUI) and
Web-based display, a limit exists on how
many items are displayed at a time.
Screen real estate limits the capability
for viewing data. Usually, in the case of a
thick GUI, a grid or table is used to hold
a list of items.

For a Web-based presentation, search
results can be broken down into pages

and navigation controls that are used to
display information.

In addition, it’s safe to assume that
given a screen of information the user
needs a few seconds to digest results
and determine the next action.

Developers can take advantage of the
information by installing a mechanism to
release the data across the wire as needed.
Note: The basis of this need can be trig-
gered by user interaction or autonomous-
ly (for example, by a read-ahead algo-
rithm). For many uses, a simple imple-
mentation based on a user-initiated
request is sufficient. The read-ahead
approach adds complexity because it
requires an algorithm and a caching
mechanism. With this in mind, let’s apply
the following changes.

First, a mechanism is needed to reg-
ulate the flow of information. One way

to accomplish this is to employ the iter-
ator pattern. This technique requires
rewriting the IDL so that large amounts
of information can be broken down into
chunks to be served via a remote itera-
tor. To facilitate this implementation, it’s
beneficial to define the base iterator
interface that specifies the behavior of
the remote iterator. Listing 2 defines a
BaseIterator and a BaseListIterator. This
provides the basis for implementing a
domain-specific remote iterator such as
the ProductIterator as shown in Listing
3. Also notice that the method on the
ProductCatalog is modified to return a
ProductIterator instead of a Product
ItemList.

On the server side the implementa-
tion of the ProductIterator plays an
integral role in administering the
amount of data for transfer. In essence,
the ProductIterator is the transient
CORBA object that materialized during
the getProductItems(…). It’s transient
in nature because its content depends
on a search result. If the result is collect-
ed and provided via a collection class
such as ArrayList, ProductIterator
implementation is simplified because
ArrayList provides a ListIterator or Iter-
ator on its content. Another change is in
the implementation of the ProductCat-
alog servant. The getProduct Items(…)
returns the ProductIterator object refer-
ence instead of an array of product IDs
(scenario A) or products (scenario B).
Since the product and product ID are
CORBA data types and the server data
presentation may use an enterprise
object model, data mappings are
required. By using the ProductIterator,
the mappings are deferred to its imple-
mentation.

On the client side the proxy imple-
mentation fires off the initial request and
caches the remote iterator object refer-
ence. Optionally, the proxy can immedi-
ately fetch the next n items before return-
ing. Figure 5 outlines the interactions
among the components. When the client
application specifies the initial search
request, the client proxy object performs
prerequest work by checking its cache. If
no information for the given criteria is
available in the cache, a search request is
invoked. The result is a remote iterator (a
CORBA object reference) that’s then
stored internally in the client proxy. Sub-
sequent requests by the client application
cause retrieval of one product or a block
of products. It’s optional to maintain the
products in the cache area. If caching is
used, the internal mechanics may specify
that the cache areas are cleaned up when
a new search is initiated. Listing 4 pre-
sents changes in interesting areas.

As mentioned before, sometimes a

C O R B A C O R N E R

FIGURE 4 Scenario C – Return remote iterator, then use it to retrieve n objects

Client
Application

Remote
Service

Product
Manager

Product Iterator

Client
Proxy

ProductIterator getProducts(…)

Product getProduct(id)

FIGURE 5 Remote iterator in IDL

Client Application CORBA Remote Service

ProductItemIterator
Object

Client Proxy

ORB

Stubs

Product catalog
servant

Logic to return
data as collection

1. Collects
information

2. Constructs
and links to

data collection

Return remote iterator

First n items
Next n items
Last m items

Pre-request work

Get items

Merge
to cacheThrow exception

Prepare data for use

Avail?

N

Y

Get cache
Access
 cache

Use data

Handle
exception

Everything is ok

Cache area

Java COM

Java COM

94 JANUARY 2001

solution can cause more problems. Since
the remote iterator is a transient CORBA
object, it depends on the servant’s lifecy-
cle. A mechanism must be put in place so
it doesn’t get deactivated until the client is
finished. On the other hand, we don’t want
the iterator to get garbage collected when
there’s no need. The latter issue relates to
distributed garbage collection and can be
solved with an eviction scheme. One
mechanism is to trigger the remote service
via a remote invocation to clean up during
the initial request. Another solution is to
implement a leasing mechanism via a dis-
tributed callback using the timer API, such
as the one supplied by the JDK. The prop-
er scheme depends on several design fac-
tors such as server caching, load balanc-
ing, fault-tolerance capability, static data,
and dynamic data.

An interesting application is to apply

the iterator approach the other way
around. Consider a scenario where the
client needs to submit a large block of
data (such as an application for home
insurance) to the server for storing and
processing. It’s possible to break up the
form into data chunks, allowing the
server to process the information in the
background, thus freeing the client
application for other tasks.

Conclusion
Enterprise system development isn’t

easy. Decisions made early in the design
stage have a pronounced effect on the
system’s overall responsiveness. In the
CORBA environment, an early focus on
IDL design is key because a casual design
doesn’t take advantage of the strengths
of the middleware. Creative IDL design,

however, can create many issues during
implementation time. Via utilization of a
JDK API, such as timer and collection
framework, developers can apply solu-
tions to those issues that ensure a robust,
highly available distributed system.

References
1. Gamma, E., Helm, R., Johnson, R., and

Vlissides, J. (1995). Design Patterns:
Elements of Reusable Object-Oriented
Software. Addison-Wesley.

2. Mobray, J.T., and Malveau, C.R.
(1997). CORBA Design Patterns. Wiley.

3. Object Management Group. (2000).
CORBA/IIOP 2.4 Specification.

4. Slama, D., Garbis, J., and Russell, P.
(1999). Enterprise CORBA. Prentice Hall.

C O R B A C O R N E R

Khanh.Chau@trcinc.com

AUTHOR BIO
Khanh Chau, an

infrastructure architect with
The Technical Resource

Connection, Inc., is also an
instructor and project lead

for The TRC Java Developer
Boot Camp program. He

helped design, implement,
and deploy a Spine

Infrastructure Framework
(SIF) Architecture for a major
national real estate services

company and is currently
developing an enterprise

e-commerce portal for one
of Germany’s largest

insurance companies.

public class ProductServiceProxy {
private static ProductServiceProxy instance;
private ProductServiceProxy () {}

public static ProductServiceClient getInstance() {
if(instance==null) instance= new ProductServiceProxy ();
return instance;

}

public ArrayList getProducts(String group, String category,
String status)
throws SomeException{

ArrayList productList = new ArrayList ();
try {

ProductService productService = locateRemotetService();
if (productService == null) {

// return empty list or throw user defined exception
}

// get product list
try{

// get products using criteria
// when request returns data, prepare data and store

results in collection object
} catch(SystemException se){ // handle exception}

} catch (Exception e) { //handle exception }
return productList;

}
…
}

#include "util/exceptions/idlexceptions.idl"
module iterator
{
interface BaseIterator {

boolean hasNext() raises (SomeRemoteException);
short count() raises (SomeRemoteException);

};
interface BaseListIterator {
boolean hasPrevious() raises (SomeRemoteException);
short previousIndex() raises (SomeRemoteException);
boolean hasNext() raises (SomeRemoteException);
short nextIndex()raises (SomeRemoteException);
short count() raises (SomeRemoteException);

};
};

#include "util/iterator/iterator.idl"
module productcatalog
{
struct ProductItem{
string productName;

…
};
typedefsequence<ProductItem> ProductItemList;

interface ProductIterator : iterator::BaseListIterator {
ProductItem next() raises (SomeRemoteException);
ProductItemList nextBlock (in short size) raises (SomeRe-

moteException);
ProductItem previous () raises (SomeRemoteException);
ProductItemList previousBlock (in short size) raises

(SomeRemoteException);
};

interface ProductCatalog {
ProductIterator getProductItems(in string group, in string

category, in string status)
raises (SomeRemoteException);

};
}

public class ProductServiceProxy {
private int nItems=15;
private ProductIterator remoteIterator;
private static ProductServiceProxy instance;
private ProductServiceProxy () {}

public static ProductServiceClient getInstance() {
if(instance==null) instance= new ProductServiceProxy ();
return instance;

}

public ArrayList getProducts(String group, String category,
String status)
throws SomeException{

ArrayList productList = new ArrayList ();
try {

ProductService productService = locateRemoteProductSer-
vice();

if (productService == null) {
// return empty list or throw user defined exception

}
// get product list
try{

remoteIterator=productService.getProducts(…);
} catch(SystemException se){ // handle exception}

} catch (Exception e) { //handle exception }
return this.getMoreProducts(nItems);

}
public ArrayList getMoreProducts(int nItems) throws SomeExcep-
tion{

// retrieve the next 10-15 items using cache iterator
}
…
}

Listing 4: Changes to ProductServiceProxy Implementation

Listing 3: IDL Design of Service-Specific Iterator

Listing 2: Base Iterators in IDL

Listing 1: Product Catalog Proxy Implementation

Java COMJava COM

S Y S - C O N R A D I O

Interview...with Steve Rock
VP OF ELECTRONIC GLOBAL BROADCASTING SYSTEM

AN INTERVIEW BY ALAN WILLIAMSON

JANUARY 200196

Q:
A:
Q:
A:

Q:
A:

Q:
A:

Q:
A:

Q:
A:

Q:
A:

<Alan@JDJ> I’d like to welcome
Steve Rock, vice president of EGBS.
Thanks for taking the time to speak
with us, Steve.
<Steve Rock> Thank you for this oppor-
tunity. I’ve read JDJ for the past three
years. I find your magazine highly useful.

<Alan@JDJ> Can you give us a brief
overview of what EGBS is up to? I
hear you’re doing some pretty cool
stuff.
<Steve Rock> At EGBS we specialize in
video production and streaming to broad-
band users on the Internet.

<Alan@JDJ> Is this using your Spec-
trum Server product?
<Steve Rock> Correct. As a test bed for
developing our Spectrum Server Product
Suite we’ve built two music Web sites that
provide users with the choice of which
music videos they wish to view, anytime,
anywhere – HitMusic.com and IfItRocks.com.

<Alan@JDJ> Very slick sites. Tell us
what makes Spectrum different from
more conventional streaming tech-
nologies, such as RealAudio.
<Steve Rock> The basic streaming tech-
nology is similar. We use the QuickTime
format because the Java API gives us great
control over the internals of the video.
However, what sets our Spectrum Prod-

ucts apart is that we’ve built a framework
that allows us to build highly interactive
applications in which the user can mark
up the video, be it video bookmarks,
drawing on the video, or launching URLs,
which are based on the context, in an
HTML browser as the video plays.

We’ve basically developed a suite of
tools that allows production teams or
even end users to treat a video as a time-
based drawing template that can be wired
to any type of interactivity.

<Alan@JDJ> So to illustrate this a
little more, if we were watching the
Charlie’s Angels movie from a Spec-
trum Server and Lucy Liu picks up
her mobile phone to make a call, the
viewer can click on the mobile
phone and be taken to the phone’s
Web site for more information with-
out disrupting the flow of the movie.
Is this correct?
<Steve Rock> Exactly. The user could
also pause the movie as it’s playing and
add bookmarks with a note attached. By
clicking on a bookmark in a list, the user
can jump to that point in the movie.
These bookmarks can be indexed and
searched by keyword.

<Alan@JDJ> Wild. So the user, not
just the producer, can bookmark
particular movies?

<Steve Rock> Yes. Anything a producer
can do, an end user can do. The user can
even make drawings on the movie, such
as an editor circling a piece of the movie
he or she doesn’t like, and add a descrip-
tion. This can be saved and forwarded to
other editors.

<Alan@JDJ> What has the advertis-
ing/movie industry commentary
been on this technology? It must be
a godsend to them, especially with
the trend in Hollywood for more
product placements within main-
stream movies. Your technology
effectively gives them the power to
capture users without forcing them
to remember ugly URLs.
<Steve Rock> We’ve received fantastic
feedback. We have several opportunities
opening up for us; I can’t provide the
details at this point. The reason the
industry is so excited is that with other
tools on the market, to build all the inter-
activity I mentioned, a lot of manual pro-
duction takes place. Everything is basical-
ly hand-coded. Our Spectrum Suite
removes this manual programming
process and puts the power into the end
users’ hands.

One exciting agreement we’ve just
entered into is with a major film studio to
produce a “Webisode” TV show on the
Web that will provide the viewer with
multiple paths for viewing each
episode.This is a very exciting project for
us because we’ll be incorporating all the
functionality we’ve been talking about.

<Alan@JDJ> Can you provide details
for that? Or is it all hush-hush?
<Steve Rock> It’s a joint venture with
Screen Gems, a major film studio, to
produce TV shows for the Internet.The
question is, we have TV, why would you
want to put a TV show on the Internet.
We believe the Internet and TV will
merge at some point, and this project is
one of the first to expand on the com-
pletely passive TV experience to

immerse the viewer into the show. They
can choose how the plot progresses and
what plot lines to follow.

We just had a press release go out on
www.hollywoodreporter.com/archive/holly-
wood/current/webwatch/webwatch08.asp.

<Alan@JDJ> Let’s get behind the
functionality and discover what’s
happening in the background.
<Steve Rock> What would you like to
know?

<Alan@JDJ> Well, call us old fash-
ioned but being a Java magazine,
tell us how you’re using Java in this?
Take us behind the scenes as it
were.What’s going on in the back-
ground? How are you using Java to
achieve this level of functionality?
<Steve Rock> Java is immersed in every
aspect of the project. One reason we call
it Spectrum is because this technology can
be scaled from a stand-alone Java applica-
tion that runs off a CD-ROM to a full-
blown Web site with database persistence
storage.

<Alan@JDJ> Excellent. So are you
using any J2EE APIs or the Java
Media Interface?
<Steve Rock> The Web site is complete-
ly built upon J2EE. Our design has been
modeled after the Sun Pet Store Demo
but uses XML for all configuration.

<Alan@JDJ> Spectrum is a J2EE
application. Is this primarily EJBs or
Servlets?
<Steve Rock> The Spectrum Web com-
ponent is a combination of EJBs, Servlets,
and JSP pages. All the business logic is in
the EJB tier, the Web tier is mainly for pre-
sentation, and the client interface for the
application is Swing.

<Alan@JDJ> You mentioned earlier
that you use the QuickTime format
for the video. Is this stored within a
database or fed from static files?

This is the first of a series of interviews from key people who are

putting Java to serious use. We’re proud to have Steve Rock from EGBS

for a truly interactive chat session that spanned halfway ’round the

world. EGBS is responsible for building and deploying a specialized

video/media server that allows, among other things, both content pro-

ducers and users to easily hot link particular areas of live video.

Java COM

98 JANUARY 2001

S Y S - C O N R A D I O

alan@sys-con.com

Q:
A:
Q:
A:

Q:
A:

Q:
A:Q:

A:

<Steve Rock> Well, the QuickTime for-
mat means a movie file is comprised of
many tracks that are time-based. These
tracks can be video tracks, audio tracks,
text, etc.

<Alan@JDJ> Where are these tracks
originating?
<Steve Rock> The video itself lives in a
separate static file.

<Alan@JDJ> Are you reading this
via the [java.io] interface in real
time?
<Steve Rock>This is all proprietary to the
QuickTime API for Java.

<Alan@JDJ> At what point do you
add your content to the live stream,
for example, the hot links?
<Steve Rock> I can’t divulge all the
details, but we can create QuickTime
Events within the reference movie. So in
viewing mode, as the movie plays, we
can capture these events and based on
an ID number tie them to a database. At
this point we can do anything we want
within Java.

<Alan@JDJ> I’m interested in look-
ing at the overall system. You’re in
an environment where performance
is critical. You’re required to guaran-

tee a throughput and I was wonder-
ing if you found Java to be up for
the task?
<Steve Rock> Performance is critical,
and Java poses no problem with that. The
bottleneck isn’t Java; it’s usually the Inter-
net connection.

What was more important to us was
scalability from stand-alone systems to a
full distributed system. Java is ideal for this
because we build EJBs that almost mirror
the same bean that’s used in a stand-
alone application.

<Alan@JDJ> So at the heart it’s the
same code?
<Steve Rock> The business components
are basically the same code. Of course the
user interface is completely different –
Servlets and JSP for the Web site and
SWING for the stand-alone application
components. Using the model-view-con-
trol design helped us separate these
components.

<Alan@JDJ> You seem to be using
the complete, dare I say, spectrum of
the Java API!
<Steve Rock> You got it!

<Alan@JDJ> Can you tell us if you
have noticed a significant difference
between the application servers

you’ve deployed and tested with?
<Steve Rock> I hope I don’t step on any
toes with this hot topic, but the answer is
a definite yes!

<Alan@JDJ> Honesty is never step-
ping on any toes – you’re in an envi-
ronment where performance is key.
Tell us what you found.
<Steve Rock> iPlanet Application Server
may perform quite well in production, but
I don’t know – I never got that far.

<Alan@JDJ> What are you running
hitmusic.com with?
<Steve Rock> Their development and
deployment environments were so lousy
that we couldn’t build anything in a rea-
sonable amount of time.

We’re currently running hitMusic with
WebObjects. This app server is fairly easy
to develop with, but doesn’t hold up well
in production. We have to reboot it every
two days because of memory leaks.

<Alan@JDJ> With respect to specific
app servers, are you using any ven-
dor-specific libraries or are you pure
J2EE?
<Steve Rock> We’re trying not to use
any vendor-specific code at all to give us
the flexibility to change as needed.

I haven’t tried moving our J2EE code

across vendors yet, but it seems that
required changes are minimal.

<Alan@JDJ> Did you look at any
other technology before choosing to
go with Java?
<Steve Rock> Not really. A few years ago
I chose to invest my time in becoming an
expert in Java, and I’ve been greatly
rewarded. As VP of engineering, I’ve
standardized our company on Java. I’d
need a real strong case to choose another
platform.

<Alan@JDJ> And in the words of
Prince George from “Blackadder”
…hurrah!

Well Steve, I’d like to thank you
for taking the time to give us our
first-ever JDJ-IRC chat interview.

For more information on the Spectrum
Media Server visit: www.e-gbs.com/.

AUTHOR BIO
Alan Williamson is CEO of the first pure Java
company in the UK, n-ary (consultancy) Ltd
(www.n-ary.com), a Java solutions company
specializing in delivering real-world applications
with real-world Java. Alan has authored two Java
servlet books and contributed to the servlet API.

Next Month in JDJ…
Using the Java Platform Debugger Architecture
A quick-start guide to developing with the new APIs
by Tony Loton

JLink: Cybelink’s Framework for Creating Reusable Enterprise
Components Using J2EE Part I
by Mani Malarvannan

Universal Wrapper for Entity Beans
A design approach for multitier applications implemented with Enterprise JavaBeans
by Andrei Povodyrev and Alan Askew

Journeyman’s HTTP Driver
A portable, economical, and effective means of generating HTTP traffic
by Marc Connolly

A Practical Solution for the Deployment of JavaServer Pages
Supporting Web applications without restrictions: Part 2
by Alexis Grandemange

Java and Macromedia – A Perfect Match
Transforming director movies to Java applets
by Samundra Gupta

Java COM

100 JANUARY 2001

One of the most important but least
used techniques in software develop-
ment is proper design before imple-

mentation. Everyone knows this, but it seems
that no one does it. Insane development
schedules, pointy-haired manager types
who believe that the only “real” artifact pro-
duced by a developer is source code, and a
host of other events conspire to keep devel-
opment as a nonengineering pursuit. How-
ever, those who have used good design (in
the form of use cases, sequence diagrams,
class diagrams, and so on) find that it
reduces the number of required changes
late in the project, calls for fewer design
changes after coding has started, and
shortens development schedules.

The tool that’s generally considered
the Rolls Royce of CASE (Computer
Assisted Software Engineering) is Ratio-
nal Rose. It’s the market leader and has a
well-established reputation for support-
ing large-scale development projects. In
fact, the “three amigos” who created the
UML (Unified Modeling Language),
Booch, Rumbaugh, and Jacobson, all
work for Rational. Rose supports not
only diagrams and other design arti-
facts, it also includes code generators to
realize its diagrams in source code. It
comes with built-in support for C++,
Java, Visual Basic, SQL, and a few other
languages. Alas, the Java code genera-
tion within Rose is a bit weak. It will
generate classes based on diagrams,
but its capabilities are very rudimenta-
ry. Of course, it would be nice if Ratio-
nal directly supported JBuilder. This is
the gap that Ensemble’s Rose JBuilder
Link seeks to fill.

Before talking about the product, how-
ever, a bit of background on RoseLink
extensions is in order. Rose has extensive
support for third-party add-ins. This may
include code generators, version control
packages, or anything else that developers
might want to access from within Rose. In
fact, an entire category of add-ins called
Links exists just for code generation from
models. Basically three types of links can
be created:
• Forward engineering: Takes model dia-

grams and produces source code. How-
ever, once the code has been produced,
the link has nothing more to do with it.

• Reverse engineering: Takes source code
and produces models from it, showing
all the relationships from the code in
the diagrams. However, it can’t take the
resulting models and generate source
code.

• Round-trip: Performs both of the above
tasks – it can generate code from the
model and vice-versa. The best round-
trip links will make sure the code is syn-
chronized, so the user canmake changes
in both the model and the code, then

synchronize the changes. Obviously, the last
type of link is the most powerful and there-
fore the most desirable (and not surprisingly,
the most difficult to write).

This brings us to Ensemble’s Rose JBuilder
Link, a full round-trip link with synchroniza-
tion. To use it, you must have Rational Rose
installed. It currently supports Rose 98, 98i, and
2000. Note that it won’t work without Rose; it’s
written as an add-in tool so there’s no stand-
alone version, which is typical of Rose links. It’s
a standard InstallShield installation, actually a
series of linked installs, each automatically fol-
lowing the other. So when you install it, you’ll
get a bunch of installation notices flying by.
However, it’s completely painless.

The next time you run Rose, you’ll see a
menu item under Tools for Ensemble Tools. The
first time you run it, it will ask for a license. It
looks like they’ve started using the same type of
licensing arrangement that Rose uses, either a
single license or a floating license. I’m less than
enthusiastic about the way the licensing works
in Rose (and consequently in Rose JBuilder
Link), but I suppose it’s a necessary evil. One of
the options presented in the licensing manager
is for a trial license, which lasts 30 days. This
allows you to download a copy from their Web
site and put it through its paces for a month.
There’s one quirk that’s a side effect of the
licensing. When it generates a license, it looks at
the network characteristics of your machine.

I installed it while I was connected to the
Internet via a dial-up connection and every-
thing worked great. However, I tried to run it
later when I wasn’t dialed into the Internet and
it refused to run because the license couldn’t
identify my machine. As soon as I logged back
onto the Internet, the 30-day license reap-
peared. What’s worse, when I went back into the
office and could connect through the Internet
using the office LAN, it still couldn’t see the
license. The only way I could use the license was
if I were connected to the Internet in exactly the
way I was when the license was generated.

Sigh. Maybe someday tools that are para-
noid about licensing will get it absolutely right.
For now, it generates minor inconveniences. I
can’t begrudge software vendors worrying
about licensing and pirated software, but it’s
less than optimal if it gets in the way of legiti-
mate use. The moral: before you run Rose
JBuilder Link the first time and generate the
license, make sure you’re connected to the out-
side world in the way you’ll be when you’re
working. I don’t know if this same problem
manifests itself with a “real” license. If it does,
it’s a serious shortcoming because it wouldn’t
allow me to use Rose JBuilder Link when I’m
away from the office. After talking to Ensemble
tech support, they assured me that this is a
known, intermittent problem solely with lap-
tops, and it only affects the trial version. They
also stated that they are working on a solution.

I ran Rose JBuilder Link on a 650MHz Pentium
III laptop with Windows 2000 and 256MB of mem-

P
R

O
D

U
C

T

R
E

V
I

E
W

P
R

O
D

U
C

T

R
E

V
I

E
W

AUTHOR BIO
Neal Ford, vice president of technology at the DSW Group, is
also the designer and developer of applications, instructional

materials, magazine articles, and video presentations

Ensemble Systems Inc.
280-5200 Hollybridge Way
Richmond, BC, Canada
V7C 4N3
Web: www.ensemble-systems.com
Phone: 604 231-9510
Fax: 604 231-9545
E-mail: info@ensemble-systems.com

Test Environment
OS:Windows 2000
JProcessor: 650MHz Pentium III laptop
Memory: 256MB

Rose
JBuilder Link
by Ensemble Systems

nford@thedswgroup.com

REVIEWED BY NEAL FORD

ory. However, it takes up fewer resources than Rose itself, and most
of its work is done with file generation; thus the I/O subsystem on
your machine makes more difference than the processor. The bot-
tom line: if your machine will run Rose, it should run Rose JBuilder
Link with no problem. And if your machine runs JBuilder, you have
more than enough machine to run just about anything else!

As far as the tool itself, it does an impressive job. As a stress test, I
took a fairly complex JBuilder project and used Rose JBuilder Link
to reverse engineer it to get class diagrams. The UI link has an intu-
itive user interface, showing the Rose model in an outline on the
left and the JBuilder project on the right as seen in Figure 1.

Rose JBuilder Link reverse engineered the project flawlessly. When it
was done, I had an object model based on the project. And it doesn’t just
pull the objects into Rose and create Rose references to them. It also
establishes the relationships between the classes – those within the pro-
ject and those that are part of the Java libraries. For example, Figure 2
shows a couple of the resulting classes that it created.

As you can see, both the CustomerFrame and PartsFrame classes use
the DbPanel JavaBean for user interface chores. The class diagram cor-
rectly links these classes together with a dependency arrow. Also, the

FIGURE 2 Rose JBuilder Link not only builds the classes, but correctly
establishes the relationships between them.

Kawa 5.0

Allaire Corporation
Kawa 5.0 is an integrated develop-

ment environment for J2EE applica-
tion development. A streamlined

J2EE-compliant
visual tool, it
makes Java
development
accessible to
many. Advanced
capabilities
include a debug-
ger that supports

multithreaded debugging and condi-
tional breakpoints, as well as an exten-
sibility
framework
for easy cus-
tomization.
Kawa 5.0
complements
Allaire JRun
Studio and is available in two editions,
Professional and Enterprise.

Available: Immediately
Contact: www.allaire.com

TopLink 3.0

WebGain
TopLink simplifies applica-

tion development by bridging
the gap between Enterprise
JavaBean objects and relation-
al databases. Its powerful run-
time architecture allows developers to utilize
existing corporate data for scalable applica-

tion develop-
ment.

TopLink for Java
is compatible
with major appli-
cation servers,
including IBM
WebSphere and

BEA WebLogic. It will be included in the Pro-
fessional Edition of WebGain’s flagship prod-
uct, WebGain Studio.

For businesses, TopLink eliminates data-
base redesigns and results in a reduction in
time-to-market for application development,
along with better predictability and scalability
at runtime.

Available: Immediately
Contact: www.webgain.com

CodeWarrior
For Java Version 6.0
Metrowerks

CodeWarrior for Java is a set of develop-
ment tools that can be used to create applica-
tions for wireless
devices. The tools are
the first to support
the Mobile Informa-
tion Device (MID)
profile, targeted at
wireless devices with
limited memory and
processor power.

CodeWarrior for
Java provides a pro-
ject manager and build system, class browser
and code navigation system, text editor,
debugger, emulators, and drag-and-drop GUI
development tools. Developer productivity is
enhanced with wizards for creating applets,
applications, and JavaBeans.

The tools also offer extensibility and cus-
tomization options, and can import and
export project and target settings in XML. The
PointBase database is included.

Available: Immediately
Contact: www.metrowerks.com

FIGURE 1 Rose JBuilder Link shows the object model and the JBuilder
project side by side.

—continued on page 104

JANUARY 2001102

Java COM

P
R

O
D

U
C

T

R
E

V
I

E
W

P
R

O
D

U
C

T

R
E

V
I

E
W

XJB 100

Zucotto Wireless Inc.
XJB 100 is the first Bluetooth protocol

stack written in Java. It provides the func-
tionality required for Java technology-
based wireless networking using the Blue-
tooth protocol, and is portable to any plat-
form running a Java Virtual Machine (JVM).

Zucotto Wireless first created a Blue-
tooth protocol stack in Java to bring wire-
less networking capabilities to its flagship

line of Xpresso Java
native processors
and supporting soft-
ware and hardware
development kits.
While the original
Bluetooth stack was

configured for a J2ME environment, the
licensable XJB 100 can be configured for use
on any Java platform, extending Bluetooth
functionality to any device running a JVM.
XJB 100 works with any Bluetooth baseband
that’s compatible with the Host Controller
Interface (HCI) specification.

Available: First quarter of 2001
Contact: www.zucotto.com

Jtest for Linux

ParaSoft
Jtest is the first tool of its type available for

the Linux platform. The product is a fully inte-
grated auto-
matic class
testing tool for
Java. It inte-
grates every
essential type
of Java testing
into one tool
that automati-
cally performs
static analysis,
and white-box,
black-box, and
regression test-
ing. Jtest works
on any Java
class. Develop-
ers can use
Jtest as soon as

they’ve constructed and compiled each class
of their project.

Available: Immediately
Contact: www.parasoft.com

WebLogic
Server 6.0

BEA
BEA WebLogic

Server 6.0 is one of
the industry’s most
advanced Java
application servers
for building, run-
ning, and future-proofing high-volume, mis-
sion-critical e-business applications.

This new release extends the product’s core
functionality with the latest J2EE innovations,
a wide breadth of industrial-strength “main-
frame-class” functionality, and manageability
benefits across the complete e-business appli-
cation lifecycle.

BEA WebLogic Server 6.0 now incorporates
BEA Tuxedo for improved transaction reliabili-
ty. It also includes simplified manageability,
usability, and installation with a new Web-
based management console based on the Java
Management Extension (JMX) framework, an
integrated message system based on Java
Message Service (JMS), and enhanced XML
capabilities.

Available: Immediately via download
Contact: www.bea.com

InvalidBalanceException class subclasses the built-in Java Exception
class, which is shown by the generalization arrow. You’ll notice that all
the other classes also use the Exception class because it’s thrown by
JBuilder’s jbInit() method. This diagram would have taken a long time
to create by hand, given the complexity of the application.

Rose JBuilder Link will also take class diagrams and generate
source code from them. I tested this with a fairly complex set of class
diagrams that my company had created for a client. Rose JBuilder
Link did a good job of generating the classes and creating stub
implementations for them. It will also correct syntactic errors in the
model that don’t conform to Java rules.

For example, a class description in the model incorrectly (from
a Java standpoint) declared an array. Rose JBuilder Link corrected the
problem as it generated the code. This goes above and beyond the
call of duty! When Rose JBuilder Link generates code, it doesn’t place
“magic markers” in it. A lot of code generators do place markers in
the code that can’t be removed by the developer without “breaking”
the reverse engineering of the code. Rose JBuilder Link handles this
by placing model documentation as code comments rather than
brittle “magic markers.”

Once you have both a model and a project side by side, you can
refresh the views and Rose JBuilder Link will highlight the differ-
ences between the model and the code. This is nice in situations
where the model and the code have changed simultaneously.
Within its user interface, you can see exactly what’s changed in
each. Once you’ve decided which “side” (the model or the project)
needs to be updated, use the button on the bottom to handle the
update for you. All in all, the user interface is intuitive and useful.

Rose JBuilder Link also includes some other tools to make
JBuilder and Java development easier. One of the hassles of doing
Java object modeling in Rose is the clunky user interface you
must use to see attributes of classes, such as scoping and modi-
fiers. Because Rose must support many languages, the language-
specific elements are confined to a single customizable dialog

box. One of the nice little tools that Rose JBuilder Link includes is an edi-
tor that allows you to set these characteristics without going through
Rose’s constrained dialog. This Class Editor tool is shown in Figure 3.

Rose JBuilder Link includes several other tools that space won’t allow
me to write about, including tools to help support server-side develop-
ment such as Enterprise JavaBeans. In general, I think this is an excellent
product, and it shows just how far code generation and reverse engi-
neering have come. If you need to use Rose for object modeling (you
really should be using something!), Rose JBuilder Link is a welcome
time- and sanity-saving addition.

FIGURE 3 The class editor makes it easier to control Java-specific
characteristics of a class.

JANUARY 2001104

Java COM

P
R

O
D

U
C

T

R
E

V
I

E
W

P
R

O
D

U
C

T

R
E

V
I

E
W

Java COM

106 JANUARY 2001

TogetherSoft Acquires Object
UK Ltd
(Raleigh, NC / San Jose, CA /
Southampton, England) – Togeth-
erSoft Corporation has acquired
the Southampton-based software
company Object UK Ltd, forming

a new, wholly owned subsidiary,
TogetherSoft UK Limited.
Terms of the acquisition were not
disclosed.
www.togethersoft.com

Bean-test 3.1 Available from
RSW Software
(Waltham, MA) – New from RSW
Software, a business unit of
Empirix, is
Bean-test 3.1,
the most recent
version of its
popular EJB
testing solution.
Features include multi-EJB load
testing, automatic test-case gen-
eration, automatic custom objects
support, IBM WebSphere 3.5 sup-
port, and batch processing.
www.rswsoftware.com

Rational Unveils Rational Suite
v.2001
(Cupertino, CA) – Rational Soft-
ware Corpora-
tion has intro-
duced Rational
Suite version
2001, which
includes four

new products and enhancements
to the existing 12 products in the
Rational Suite family: Rational
ClearCase LT, Rational Quality
Architect, Rational TestManager,
and the Rational Unified Process
with Content for the Microsoft
Web Solution Platform.
www.rational.com

Softwired Receives Awards
from Symbian
(Zurich, Switzerland) –
iBus//Mobile from Softwired has
been awarded the prize for both
the Symbian “Best Java Enter-
prise Application” and “Best Java
Application Overall.”

iBus//Mobile offers transpar-
ent support for wired and wire-
less networks and protocols,
automatic transcoding to adapt
content to wireless devices, mes-
sage synchronization and queu-
ing to support both online and

offline operation, and personal-
ization.
www.softwired-inc.com

STFB Inc. Launches Web-Based
Accounting System for ASP
(Pembroke Pines, FL) – STFB Inc.,
an Internet software development
firm, announces the release of

Integral Accounting
for JavaScript and
ASP, the first off-the-
shelf Web-based
accounting solution
for the application

service provider industry.
The system includes a general

ledger, accounts receivable,
accounts payable, financial report-
ing, and an e-commerce shopping
cart that is fully integrated into the
accounting application.
www.stfb.com

Pramati Releases Studio 2.0
(Hyderabad, India) – Pramati
Technologies Ltd introduces Pra-
mati Studio 2.0, the latest version
of its server-side IDE. Pramati
Studio 2.0 features full J2EE
development
life-cycle sup-
port, powerful
wizards, JSP-EJB debugger, and a
new component-based architec-
ture that enables customers and
partners to add new tools via the
Studio API.

Developers can download an
evaluation copy of Studio 2.0
from Pramati at www. pramati
.com.

Oracle Introduces Oracle9i
(Redwood Shores, CA) – Oracle
Corp. has consolidated tradition-
ally separate, highly specialized
business intelligence technolo-
gies into a single infrastructure
for business information – Ora-
cle9i. Using the built-in business
intelligence capabilities of the
Oracle9i application server, e-
businesses can now make per-
sonalized business information
available to anyone within the
organization using any Internet-
enabled device, including mobile
phones and PDAs. E-businesses

can also now make valuable
business information available to
partners and customers in a
timely fashion.
www.oracle.com

Alcatel and Zucotto
Form Alliance
(San Jose, CA) – Alcatel and Zucot-
to Wireless Inc. have announced a
strategic alliance that will com-
bine Zucotto’s
Java native
processor with
Alcatel’s family of Bluetooth prod-

ucts to deliver
efficient, opti-
mized balance

between high-speed and low-
power consumption.
www.alcatel.com
www.zucotto.com

BSDi Releases BSD/OS 4.2
(Colorado Springs, CO) – BSDi
announces the availability of
BSD/OS version 4.2 Internet Serv-
er Edition. The latest BSD/OS
release supports Java 2 Standard

Edition and
incorporates
the KAME
IPv6 and
IPsec imple-

mentations.
New features include VLAN

(802.1Q, 802.3AC), wireless Ether-
net 802.11 (Aironet/WaveLAN),
new sound drivers, additional RAID
support (AMI MegaRAID, Com-
paq), Linux Application Platform
(LAP) support updated for RedHat
Linux 6.2, and FAT32 support for
accessing the hard disk used by the
Windows operating system in dual-
boot configurations.
www.bsdi.com

(Palo Alto, CA) – The
Program Management
Office of the Java Com-
munity Process (JCP)
program, the communi-
ty process for evolving Java tech-
nology, has announced its new
executive committee (EC) mem-
bers. The 30 members, who were
voted into office by the Java
technology developer communi-
ty through the JCP program, will
guide the development of the
Java platform for a three-year

term staggered to
allow for five of the
15 seats of each
Executive Commit-
tee to come up for

election each year. The new EC
members will take office on
December 12, 2000.

The result of the voting can
be seen at http://betrusted.asap-
ware.com/sun_results.adp.

Java Community Process
Program Election Results Are In!

(Houston, TX) – Interac-
tive Network Technolo-
gies, Inc. (INT), a lead-
ing developer of high-
performance graphics
components, has announced
availability of J/CarnacPro 2.0, its
graphics toolkit based on Java 2D.

The product boasts significant
performance enhancements,

including new geometry
and attribute editors for
interactive editing of
graphical objects, exten-
sive printing and print

preview API, updated tutorials, and
improved zooming, caching,
scrolling, and resizing.

To register for a 30-day evalu-
ation, visit www.int.com/.

Interactive Network Technologies
Releases J/CarnacPro 2.0

Java COM

108 JANUARY 2001

Fresco Embedded Browser by
ANT Available
(Los Angeles, CA) – ANT Limited
has announced that now its Fres-
co embedded browser runs on
the Java
platform.
This new
imple-
mentation
uses the Java Native Interface
(JNI) to interface with Java-
based Internet devices, enabling
ANT to provide OEMs with a
small footprint, fully customiz-
able browser for Java environ-
ments. ANT Fresco is written in
C, which reduces development
times by combining the ease of
programming in Java with the
speed and performance advan-
tage of a native browser.
www.antlimited.com

Flashline.com Adds CRM and
E-Business Components
(Cleveland, OH) – Flashline.com
Inc. is expanding its Software Com-
ponent Marketplace with the addi-
tion of leading-
edge EJB-based
components from Compoze Soft-
ware, Diamelle Technologies, and
Ohioedge. The products are
designed to accelerate the develop-
ment of e-business applications.

The company also announces
that Adam Wallace has joined the
company as chief information offi-
cer. He will work closely with the
management team to guide the
company’s technical direction, and
will lead all software development
efforts to support Flashline’s busi-
ness initiatives across the compa-
ny’s multiple divisions. Wallace
was previously CEO at XA.com, a
developer of e-commerce software
components.
www.flashline.com

SecureByDesign.com Offers New
E-Mail Encryption Software
(Houghton, MI)– SecureByDe-
sign.com has
launched its J7
secure e-mail
software for Java
developers. The
product conforms to the S/MIME
standard, and allows developers

to digitally sign and encrypt out-
going e-mail messages. It can also
parse incoming secure e-mail.
www.securebydesign.com

Virtuas Releases jtagwireless
(Englewood, CO) – Virtuas Solu-
tions, Inc., is offering its JSP wire-
less tag library,
jtagwireless,
for public
download. The library is based
on Sun Microsystems’ JSP 1.1
specification and the WAP
Forum’s WML 1.1.

The tags are free, requiring
only member registration. To
download them, visit www.vir-
tuas.com/downloads.html.

IONA's iPortal App Server
Achieves J2EE Certification
(Waltham, MA) - IONA Technolo-
gies, the Enterprise Portal Com-
pany, has released version 1.3 of
its iPortal Application Server. The
server, which has been certified
by Sun Microsystems’ Java 2,
Enterprise Edition (J2EE) Certifi-
cation, is a corner-
stone of the iPortal
Suite, a standards-
based integration,
development, and Web presenta-
tion platform for the creation of
e-business applications and
enterprise portals.

It includes an EJB 1.1 tech-
nology-based container, a J2EE
Web container that supports
JavaServer Pages technology,
servlets, and complete support
for other enterprise technology

specifications included in the
J2EE platform.
www.iona.com

Sun Links Java, XML
for Online Business
(Palo Alto, CA) – Sun has released
APIs that connect Java software
with XML, making it easier for
software developers to create
Web sites for e-business.

One interface, Java API for
XML messaging,
will allow busi-
nesses to send
and receive XML
messages using a
new messaging standard called
WebXML. Another interface is an
updated Java API for XML pro-
cessing, which now supports the

latest XML standards. The inter-
face integrates Java software
with XML parsers. Free test ver-
sions are available at
www.sun.com.

Sitraka Software Announces
Support for StudioJ Customers
(Toronto, ON) – Sitraka Soft-
ware (formerly KL Group) has
announced an agreement with
Rogue Wave Software to support
the company’s StudioJ users in
adopting its own JClass compo-
nents. Rogue Wave, which
recently announced the retire-
ment of its StudioJ GUI compo-

nents, will be
working with
Sitraka to
ensure Stu-
dioJ cus-
tomers are
able to make

a smooth transition to using the
JClass GUI components for
their ongoing and future Java
development needs.

As part of this agreement,
Sitraka will offer StudioJ cus-
tomers already receiving active
support a free copy of JClass
Chart or JClass LiveTable when
they purchase a one-year gold
support subscription – a package
that entitles them to a year of free
upgrades and unlimited support.
StudioJ customers who don’t
have active support will be eligi-
ble to purchase JClass products
at a discounted price.
www.sitraka.com

(Mountain View, CA) – Point-
Base, Inc., will deliver its Uni-
Sync technology (universal syn-
chronization)
equipped with
built-in
SyncML tech-
nology to de- vice manufactur-
ers, Java application developers,
Internet companies, and wire-
less carriers who want to deploy
SyncML-compliant products
and services as early as Q2,
2001.

This new solution will give
users local and remote data syn-
chronization among SyncML-

compliant products
and services, regardless
of the platform or man-
ufacturer.

PointBase will add SyncML
technology to selected implemen-
tations of its UniSync API, as well
as provide professional services to
its partners to quickly implement
the SyncML specification.
www.pointbase.com

PointBase to Deliver UniSync
Technology Equipped with
Built-In SyncML

(Toronto, ON) – Sitraka Software
(formerly KL Group) has
launched a new generation of
DeployDirector, with a new pric-
ing model that allows
the enterprise cus-
tomer to deploy
applications more
cost-effectively to an
expanding workforce. DeployDi-
rector 1.3 also introduces Ger-
man and French localization and
support as well as a free cus-

tomer evaluation version avail-
able online.

The pricing model is based
on the number of applications to

be deployed rather
than the number of
“seats” the applica-
tions are being
deployed to. A cus-

tomer evaluation version can be
downloaded free from
www.sitraka.com/software/
deploydirector/.

Sitraka Software Uses Innovative
Pricing in Release of DeployDirector
1.3 E-Mail Encryption Software

Java COM

110 JANUARY 2001

The conference in San Jose
was a resounding success. During
the time I spent there, I tried to
get an idea of how many atten-
dees had also been to the XML
DevCon held in New York last
summer. As expected, most of
them had waited for the show to
hit their city. It looks like our idea
of taking the “show on the road” is
really paying off. Based on the
input provided by some of the
vendors I interviewed, it seems
that most of the attendees were
already familiar with the tech-
nologies and were seriously look-
ing for tools and frameworks they
could use in specific applications.
As a representative from one of
the vendors put it, “They’re all
now saying ‘Show Me.’” This is not
surprising, since the DevCon was
held in the Valley, the home of the
developer. However, I think this is
true for the rest of the U.S., as well
as the rest of the world – wherever
enterprise-level applications are
being developed. XML has defi-
nitely come of age.

The conference drew a mixed
crowd – from experienced devel-

opers to program managers and
business development folks.

Welcome Reception
Sponsored by XML-Journal

The event kicked off with a
welcome reception by XML-Jour-
nal. Attendees gathered in a casu-
al setting to exchange ideas with
fellow XML developers and to net-
work with the industry’s leading
XML influencers.

Featured Speakers
Industry icons such as Tim Bray,

Charles Goldfarb, Don Chamberlin,
and Jim Gray spoke at XML DevCon
2000 for the first time.

The conference opened with a
keynote presentation by Bob
Sutor, program director, eBusiness
Standards Strategy, IBM Cor-
poration. In his XML DevCon
address, “XML and Web Services:
Bringing Order to B2B on the Web,”
Sutor said that the primary mission
is to assure the global availability of
information through the interoper-
ability of data and workflows. He
announced IBM’s XML strategy to
(1) support standards through

open source, (2) enable its entire
product line, and (3) build e-busi-
ness solutions.

Tim Bray’s official launch of
the Map.net Web site was the buzz
of the conference. Using the conti-
nent of Antarctica as a visual refer-
ence, Bray’s company, Antarctica
Systems, has constructed a three-
dimensional map of the World
Wide Web. Built with the compa-
ny’s Visual Net software, the site
presents users with a 3D land-
scape; the relationships between
network elements are represented
geographically.

Conference Tracks
Six conference tracks assured an

interesting session for every time
slot from Sunday through Wednes-

day. The tracks covered applied
XML/e-business, Java/ scripting,
wireless/messaging, servers/mid-
dleware, query/ schema/database,
and developer techniques.

The conference delegates were
taught by some of the leading
XML experts in the industry,
including Keith Bigelow, Barbara
Bouldin, Kurt Cagle, Russell
Castagnaro, Don Chamberlin,
Parand T. Darugar, Max Dolgicer,
Mohamed El-Mallah, Mary Fer-
nández, Dave Frankel, Daniel P.
Gill, Peter Haggar, Seth Hitesh,
Molly E. Holzschlag, David S.
Linthicum, Brett McLaughlin,
Norbert Mikula, Duane Nickull,
Ken North, Shelley Powers, Gerry
Seidman, Simon St. Laurent, and
Mark Volkmann.

SHOW REPORT

S
an Jose, CA – XML enthusiasts from 25 countries – programmers, developers, engineers, soft-
ware architects, system engineers, Web developers, product managers, project leaders, con-
sultants, and educators gathered together at the San Jose DoubleTree Hotel November
12–15, 2000, for four days of technical sessions and a two-day interactive exhibition. Spon-
sored by SYS-CON Media, XML-Journal, and Camelot Communications, XML DevCon 2000’s
faculty included 33 authors, the pioneers who created markup languages and SQL, a W3C Fel-
low, ACM Fellow, Seybold Fellow, STC Honorary Fellow, and Turing Award winner.

Unprecedented
All-Star Lineup
of Speakers

XML DevCon becomes
event to come to Silicon

111JANUARY 2001

Java COM

XMLDevCon2000
Show Floor Highlights

The exhibition floor had a
good show of vendors and their
products. Several of the tools
offered by vendors are into their
second or third release, indicating
a maturing of the XML tool mar-
ket. Here are some of the tools that
garnered a lot of attention:

XML SPY 3.5
Altova previewed XML Spy 3.5,

its Windows-based integrated XML
document, XML schema, and XSLT
stylesheet editor.

Alexander Falk, president of
Altova, noted that XML Spy now
offers “syntax highlighting, for
text-based entry, along with an
enhanced grid view providing
intelligent entry features like drag
and drop, and an integrated table
view for repeating elements.”

XML AUTHORITY 2.0
TIBCO Extensibility dem-

onstrated a preview of XML
Authority 2.0, the latest revision of
their schema editor for Windows,
UNIX, and (in beta) MacOS X,
with extra support for Extensibili-
ty’s own Schema Adjunct Frame-
work, along with Oracle's iFS and
Software AG’s Tamino Starter Kit
XML.

<XML>TRANSPORT AND
<XSL>COMPOSER

Whitehill Technologies dem-
onstrated <xml>Transport and

<xsl>Composer, two tools for trans-
forming information into XML and
among XML vocabularies.

Mark Your Calendar
The exhibition area proved to

be a good meeting place for ven-
dors and prospective customers. I
talked to several vendors who had
gotten very solid leads as a result
of the interaction they had with
the attendees. Even more interest-
ing was the fact that a few of the
vendors mentioned that they had
met each other for the first time
and were exploring possible busi-
ness relationships. To me, this sig-
nifies two things. One is that the
XML market is still fragmented in

the sense that there are several
independent developments tak-
ing place in different companies
that could supplement each other
and offer more complete XML-
based solutions. The other is that
there is a need for conferences like
XML DevCon and magazines like
XML-J that can help bring inter-
ested parties together by offering
venues for interaction and helping
vendors introduce their technolo-
gies to developers and business
managers.

SYS-CON Radio
SYS-CON Radio had a booth at

the entrance of the exhibit hall and
a booth inside the hall. The radio
booth was a good location to see
the crowd of attendees bustle by,
trying to cram as much informa-
tion as possible in the four days
packed with keynotes, presenta-
tions, and vendor shows. At the
booth we interviewed several ven-
dors to get an idea of their impres-
sions of the show. It was reassuring
to see that some of the vendors are
addressing serious issues in XML
applications such as performance,
data processing, and security.

Tune in to SYS-CON Radio to
hear these interviews at www.
xmldevcon2000.com/.

“XML DevCon’s technical pro-
gram and interactive exhibit
floor will continue to set the
standard in conference educa-
tion for the software develop-
ment community," said Ken
North, conference chair. High-
lights of the event may be found
at www.xmldevcon2000.com.

If you did not attend, make plans
now for the 2001 events in London
(February 21–23), New York City
(April 8–11), and San Jose, California
(October 29–November 1).

• Accelr8
• Altova-The

XML Spy
Company

• Arbortext
• Baltimore

Technologies
• Be-Bop
• Cape Clear
• Code 360
• Cysive
• Eliad

Technologies
• e-Numerate
• Fawcette

Publications
• Geek Cruises
• Global

Knowledge
• HiT Software
• IAM Consulting
• IBM
• Icon
• InfoGlide
• InfoShark
• Infoteria
• Ingeniux
• Insight
• Interknack.com
• Intershop
• IXIASOFT
• Learning

Patterns.Com
• Learning Tree

International
• MAILERS

Software
• Merant
• Microsoft
• MindGap
• Nanobiz
• NeoCore
• Netfish

Technologies
• Novell
• Oasis
• ObjectSpace

• Openlink
• Oracle
• O'Reilly
• Percussion
• Pervasive
• Planet 7

Technologies
• Popkin Software
• Progress

SonicMQ
• Py-Bix
• PyBiz
• Radiant Logic
• Radview
• Random Walk
• RogueWave

Software
• Seagull
• SearchXML

Resources.Com
• Sequoia

Software
• SilverStream
• SoftQuad

Software
• Software AG
• Sun

Microsystems
• SYS-CON

Media, Inc.
• Talva

Corporation
• TechTarget
• The Breeze

Factor
• TIBCO

Extensibility
• Westlake
• Whitehill

Technologies
• Wrox Press
• XAware
• XML Global
• XML Solutions
• XYZFind
• Zkey
• Zot

largest XML
Valley in 2000

Keynote speaker Tim Bray

ajit@sys-con.com

Participating Companies
at XML DevCon
Silicon Valley:

116 JANUARY 2001

The intense demand for highly quali-
fied engineers has not only produced
serious challenges for hiring managers
but also two kinds of Java engineers.

At our firm we provide skilled engi-
neers to fill our clients’ needs. This means
reviewing resumes, screening, and quali-
fying candidates on a daily basis. The two
basic types of engineers we come across
most often are: those who know Java and
those who understand Java.

Engineers who know Java may have a
strong background in database-centric
applications with skills in SQL, Oracle, or
PowerBuilder. They may have done a lot
of front-end or UI development.

Aware of the strong demand (and the
high rates and salaries paid) for those
with Java skills, these engineers will typ-
ically pick up a Java book, take a Java
course, or “teach themselves Java.”

“I know Java, it’s just another pro-
gramming language,” is a comment we
hear all the time from engineers with
about six months experience “working
with Java.”

The know-Java engineers enter the
job market asking for $100 an hour or
$150K a year, and staffing agencies are
often quick to place them on a contract
or full-time position with a major client.

One thing is certain in the fast-
paced, high-stakes, high-tech world.
Hiring managers don’t put out a call for
engineers unless they needed one two
months ago. They need an expert who
can hit the ground running, solve their
problems, and get the job done right.

The know-Java engineer often gets
on a mission-critical project and (having
oversold his or her Java skills) becomes
quickly overwhelmed and can’t do the
job. This all-too-familiar scenario is a
sure-fire career killer.

The know-Java engineer has now
burned bridges with the hiring manager
(whose precious time and budget have

been wasted), the client company (who
tracks these incidents in a database), the
recruiting agency, and other co-workers
on the project.

A series of short-term contracts (or
worse, short-term, full-time jobs) listed
on a resume is a serious red flag for any-
one who’s hiring, and it’s hard to get a
good reference from a manager you
burned.

While it may take only a few weeks to
learn the syntax of Java, it takes a lot of
in-depth experience to understand it
and know how to deal with critical
issues and avoid pitfalls that are exclu-
sive to Java.

Engineers who understand Java typi-
cally have an extensive OOP back-
ground, most likely with C++, and a
strong grasp of object-oriented method-
ologies, development techniques, and
design patterns. They have Java pro-
gramming experience (typically more
than two years) and have worked with
EJB or J2EE among other skills, such as
CORBA, distributed network comput-
ing, and multithreaded programming.

As a mid- to senior-level engineer,
you’re not being paid a high hourly rate
or salary to simply know the language of
Java, you’re being paid for your expertise
and experience in avoiding and fixing
critical problems that come up in the
development process.

The understand-Java engineer has
experience in developing scalable,
robust, high-performance, and large-
scale applications. He or she knows
what can and can’t be done with Java. If
there’s a problem, he or she knows
where to look and how to fix it swiftly
and efficiently.

Hiring managers, faced with aggres-
sive deadlines and budget constraints,
often make the mistake of trying to cut
corners by bringing in engineers (from
rent-a-programmer shops at an “appar-

ent” low cost) with minimal local experi-
ence, technically and work-culture wise.

Too often these managers end up
paying for a know-Java engineer who’s
read the book and knows the syntax of
the Java language, but is not experi-
enced enough to look at the bigger pic-
ture. That relatively low contract rate of
$75 an hour doesn’t seem like such a
bargain when after two months the
manager has wasted $24,000 on an engi-
neer who couldn’t get the job done.

But what if I’m a know- Java engineer
who wants to become an understand-
Java engineer? How do I gain the experi-
ence I need without overselling myself
and getting in over my head?

There are a few smart steps you can
take to make the transition from junior
to mid or senior Java engineer:
• Don’t fool yourself. Realize what skills

you have and what you need to learn.
• Look for a full-time position in a Java

environment of a large company and
plan to spend about two years there.

• A large company is much more likely
to hire someone who’s a bit junior and
invest in training you.

• Bring all the skills and value you have
to the company, and get all the Java
development and object-oriented
programming experience you can
from them.

• Or try to find a long-term contract (six
months or more) in a Java develop-
ment environment offering your ser-
vices at a reduced hourly rate.

• Make yourself a great value proposi-
tion for the company – you’ll be get-
ting an even greater long-term value
from the experience you’ll gain.

• Remember that your goal is not just to
know, but to understand Java.

Two Kinds of Java Engineers
You need to understand Java, not just know it

AUTHOR BIOS
Bill Baloglu is a principle

at Object Focus
(www.ObjectFocus.com), a

Java staffing firm in the
Silicon Valley. Prior to

ObjectFocus, Bill was a
software engineer for 16
years. He has extensive
OO experience and has

held software
development and senior
technical management

positions at several Silicon
Valley firms.

Billy Palmieri is a
seasoned staffing industry
executive and a principle

of ObjectFocus. Prior to
ObjectFocus, he was at

Renaissance Worldwide, a
multimillion dollar, global
IT consulting firm, where

he held several senior
management positions in

the firm’s Silicon Valley
operations.

billb@objectfocus.com

WRITTEN BY
BILL BALOGLU &
BILLY PALMIERI J

ava Jobs is our new column. Each month we’ll focus on different aspects of
working with Java – in-demand skills, up-and-coming technologies, hot cities,
salaries, rates, and other tips to help you plan and further your career in the Java
marketplace. Whether you’re a Java developer or manager, you’ll find this col-
umn full of useful information and tips. We’d also like to hear from you about
related topics that you’d like us to cover as part of this column. Please send your
suggestions to jdjcolumn@objectfocus.com.

Java COM

billp@objectfocus.com

Career Opportunities

Recruitment Advertising Information: 800-582-3089

JavaDevelopersJournal.com
www.javadevelopersjournal.com is
your source for industry events and
happenings. Check in every day for
up-to-the-minute news and develop-
ments, and be the first to know what’s
going on in the industry.

Participate in our daily Live Poll and
let your opinion be heard.

JavaDevelopersJournal.com
Developer Forums
Join our new Java mailing list commu-
nity. You and other IT professionals,

industry gurus, and Java Developer’s
Journal writers can engage in Java dis-
cussions, ask technical questions, talk
to Java vendors, find Java jobs, and
more. Voice your opinions and assess-
ments on topical issues, or hear what
others have to say. Monitor the pulse
of the Java industry !

Digital Edition
Don’t have your print edition on
hand? Can’t wait for the next issue to
arrive in the mail? Our digital edition
is just what you need. As long as you
have your computer with you, you
can read Java Developer’s Journal
anytime, anywhere. Looking to
research a specific topic? Search our
archives – we’ve got every article
that’s been published since our pre-
mier issue!

JDJ Readers’ Choice Awards
Vote for your favorite Java software,
books, and services in our annual JDJ
Readers’ Choice Awards, January 10

through May 30, 2001. Winners will
be announced at JavaOne 2001 and
presented at the International
Conference for Java Technology – Fall
Conference.

International Conference for
Java Development Spring 2001
The International Conference for Java
Development, presented by Java Devel-
oper’s Journal, will take place February
26–March 2, at the Marriott Marquis
Hotel in New York City’s Times Square.
Click here to see what sessions are
scheduled, who the keynote speakers
are, and who’s exhibiting. Register
now for the largest Java software
developer event coming to the East
Coast in 2001!

What’s Online This Month...
January 2001

JANUARY 2001

Java COM

122

